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What Is Pex?

Preprocessor and build system for Cython
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What We Wanted

A language that gets down to the iron, runs at C 
speeds, and has no surprises in generated assembly, 
but at the same time guides you along to a clear, 
succinct and correct expression of complicated 
systems and algorithms.
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What We Wanted
More Concretely
1.Ineffable quality

• write complicated algorithm

• either it is right the first time

• or it is very close, and easy to diagnose and fix

2.Look at program assembly execution trace

• most instructions have to do with essence of problem
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Real Problem for the World

• Stay easy, friendly, interpreter-like

• Yet use all the cycles the computer has to offer to solve 
the problem, not for overhead

• Feel this has not been addressed, and not for any good 
technical reason
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Discarded Candidates

• No C, didn’t feel right in the 21st century

• No C++, didn’t think we were smart enough
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Within a Stone’s Throw

• Python, gets you everything except performance

• huge deal, wasn’t clear there could be a language 
that would corral you in the right direction

• Pyrex, epsilon away, most of the heavy lifting done

• fast attribute access, exception handling, resource 
management - all the essentials for large system
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Needful Things

• No gear shifting to C

• Stay Pythonic, see how far you can push it without 
sacrificing performance

• Naturally leads to a few desirables
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Fast Numerics
Essential?
• Already have linear algebra packages, but...

• If Python API, Python overhead makes using small 
matrices infeasible

• May not have what you want

• Limits and contorts your thinking

• you jump through hoops to vectorize

• a priori, you only consider things that are vectorizable
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Fast Numerics
Basic

In Pyrex

cdef int i

arr=numpy.zeros(n)

for i from 0<=i<n:

arr[i] = i

Python speed

In Pex

cdef int i

cdef ndarray<int, n> arr

for i from 0<=i<n:

arr{i} = i

C speed, as if arr is int*

Easily >100x faster
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Matrix Multiply
Pyrex

cdef void matmult(ndarray r,

ndarray A, ndarray B):

cdef int i,j,k

for i from 0<=i<A.dimensions[0]:

	 	 for j from 0<=j<B.dimensions[1]:

	 	 	 for k from 0<=k<A.dimensions[1]:

	 	 	 	 r[i,j]=r[i,j]+A[i,k]*B[k,j]
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Matrix Multiply
Pex

cdef void matmult(ndarray<double 2d> r,

ndarray<double 2d> A, ndarray<double 2d> B):

cdef int i,j,k

for i from 0<=i<A.dimensions[0]:

	 	 for j from 0<=j<B.dimensions[1]:

	 	 	 for k from 0<=k<A.dimensions[1]:

	 	 	 	 r{i,j}=r{i,j}+A{i,k}*B{k,j}
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Matrix Multiply
Performance

5 10 20 50 100 200
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241
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657
616 628

x Times Slower than Pex

Matrix Size (NxN) * (NxN)

Pyrex Python
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The Gauss-Jordan Sweep
H = SWP[k]G

hkk = −1/gkk

hjk = hkj = gjk/gkk, j "= k
hjl = hlj = gjl − gjkgkl/gkk, j "= k and l "= k

SWP[1, 2, . . . , p]G =
[
−G−1

11 G−1
11 G12

G21G
−1
11 G22 −G21G

−1
11 G12

]
.
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Sweep Algorithm
Performance
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Sweep Algorithm
Performance

5 10 20 50 100 200
0

125

250

375

500

36

140

260

356 335
371

47

169

329

434 414
450

x Times Slower than Pex

Matrix Size (NxN)

Pyrex Python
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No Header Files

You write file.px

cdef class item:

cdef double x,y,z

cdef meth(me): pass

cdef func():pass

Pex produces file.pxd

cdef class item:

cdef double x,y,z

cdef meth(me)

cdef func() 

And file.pyx

<... implementation ...>
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No Makefiles	

main.px

%pimport mod

mod.px

%pimport submod

submod.px

pass

• In the shell

$ pex main.px

• Or in Python

main=pex.pimport(‘main’)

• submod gets compiled, 
then mod, then main

• Feels interpreted
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Automatically pickleable 
cdef classes

• They are!

• Pex generates the magic __reduce__ and __setstate__ 
methods

• Caveat: can not have C pointer or struct attributes
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Discovered We Wanted More
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Fast Slices

cdef ndarray<double,(n,m,k)> arr

arr{:,1:7,:-4}

same as

arr[:,1:7,:-4]

but does not plumb through python runtime, just quick 
creation of an ndarray header (in C code)
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Faster Serialization

Pickling

write

cdef class item: pass

pickle.dump(item(),open(‘file’,’w’))

read

x = pickle.load(open(‘file’))

Goes through Python, slow
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Faster Serialization - FastIO

write

cdef item x = item()

x._fastdump_(open(‘file’,’w’))

read

x = pex_create_uninitialized(item)

x._fastload_(open(‘file’)) 

>12x faster than pickling, as fast as writing a C struct
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FastIO
Limitations

• Can’t dump a Python list

• Can’t dump an ndarray of Python object

• All attributes must be either primitive C types (int, 
double, etc), or decorated ndarrays

• This is just for the leafs of your object hierarchy

• Still, can read/write mammoth data at C speed
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	 cdef int *p=NULL

	 p[0]

def func(): poof()

def main(): func()



PNYLAB LLC

Less Vigorous Coredump (1)

Have main.px

cdef poof():

	 cdef int *p=NULL

	 p[0]

def func(): poof()

def main(): func()

Guess what happens

$ pex main.px
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Less Vigorous Coredump (2)

$ pex main.px
---- BEG BACKTRACE -----------
   Containing Executable File       Instruction Addr             Closest Symbol
   ./main.so                        0x3ACA                    __pyx_pf_201_func

   /usr/lib/libpython2.3.so.1.0     0x43991                    PyCFunction_Call
   /usr/lib/libpython2.3.so.1.0     0x20637                       PyObject_Call
   /usr/lib/libpython2.3.so.1.0     0x721B0       PyEval_CallObjectWithKeywords
   /usr/lib/libpython2.3.so.1.0     0x205FE                 PyObject_CallObject

   ./main.so                        0x37C3                    __pyx_pf_201_main

   /usr/lib/libpython2.3.so.1.0     0x780A6                   PyEval_EvalCodeEx
   /usr/lib/libpython2.3.so.1.0     0x7836D                     PyEval_EvalCode
   /usr/lib/libpython2.3.so.1.0     0x92952             PyRun_SimpleFileExFlags
   /usr/lib/libpython2.3.so.1.0     0x939A4                PyRun_AnyFileExFlags
   /usr/lib/libpython2.3.so.1.0     0x9869E                             Py_Main

   python                           0x5B2                                  main

   /lib/tls/libc.so.6               0x14DE3                   __libc_start_main

   python                           0x501                                (null)
                                                                        [START]
---- END BACKTRACE -----------
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Bounds Checking

file main.px

cdef ndarray<int,n> arr

arr{n+1}

run with bounds checking (about 20 times slower)

$ pex -b main.px
Traceback (most recent call last):
  File "main.pyx", line 298, in main.main
    __px__ndarray_int_get1(arr,"arr",n+1,'n+1')   ##  arr{n+1} | main.px,4
IndexError: Out of bounds index access "n+1"==11 for dimension 1 of "arr" which has length 10
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%whencompiling:
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Compilation Configuration

Setup link with external C libraries inside your file.px

%whencompiling:

	 env.cc.append('-I../../vector/include')

	 env.link.append('../../vector/vector.so')

Then bring in prototypes as usual

cdef extern from "vector.h": ...
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General Pragma Mechanism

def func(ndarray<int 2d> arr):

	 %whencompiling:

  scope.pragma_ndarray_bounds_checks = True

arr{1,n+1}   # THROWS EXCEPTION

Turns on bounds checks

Works by scope, so here pragma applies only to func()
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Conversion to and from 
Dictionaries
• cdef classes opaque to 

Python

• Pex generates _todict_ 
and _fromdict_ methods

• Define in Pex, mod.px

cdef class item:

cdef int x,y

• From Python

mod=pex.pimport(‘mod’)

x = mod.item()

x._fromdict_({‘x’:7,’y’:12})

print x._todict_()

out: {'y': 12, 'x': 7}
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Gotchas

• Pex has no parser, regular expression based

• Leads to annoying quirks, eg

def func(a, # comment

b):

• Joined to def func(a, # comment b):, so syntax error

• Also, no real type system
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Off the Reservation

• pointers (tool of the devil)

• don’t use them

• don’t think you need to

• would like to prohibit them

• structs (use cdef classes instead)
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Best of Both Worlds

• Luxuriate in Python decadence

• lists, tuples, dicts, itertools, anything goes

• most of the time

• Get down to the iron where it matters

• not much additional pain, lots of performance
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Big Picture
Lessons Learned

• Have enough performance

• INCREFd memory management - fast, good

• Compiler working hard not only OK, but what you want

• With this setup, someone who only knows Python, can 
write C efficient code
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Big Picture
Lessons Learned
• Coredumps change feel of language

• completely

• sleep worse

• waste life chasing down horrific memory bugs

• die younger

• taken away from essence of problem
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Big Picture
Going Forward
• Control coredumps

• Give up pointers, naked memory access (Hello Fortran!)

• not as horrible as it sounds

• have fast arrays, add in fast multiple value return

• the only thing you give up: blitting

• allows safe mode guaranteed to catch corruption
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Going Forward
Safe Mode
• Runs within 3-4x times slower

• Guaranteed to catch any memory corruption

• Set a mask at compile time

• bounds checking

• uninitialized variable access

• keeps track of object creation, detects leaked cycles
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Wishlist - Performance

• Pragma C_code_only

• Fast operator overloading

• Fast multiple return

• Fast comprehensions: arr={i*i for i from 0<=i<n if i%2}

• Tool color codes source based on whether it’s C or Py
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Wishlist - Comfort

Now Want

cdef ndarray<int,(3,4)> arr cdef int arr{3,4}

cdef item x=item(arg1,arg2) cdef item x(arg1, arg2)

And also want, efficient append to 1d ndarray
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Status
Our Shop

• 30 KLOC of Pex code (1.4 MLOC generated C)

• 5 people actively using Pex, more soon

• Business unforgiving, speed and quality essential
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Status
Availability

• Python Software Foundation License (PSF)

• Works on Unix, Mac (all but coredump backtraces), 
Windows - probably close, but who knows

• Get

•pexlang.sourceforge.net

http://pexlang.sourceforge.net/
http://pexlang.sourceforge.net/
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Status
Immediate Future

• Want to stop heavy development for a year or so

• Happy to help move any features into Cython proper

• Happy to accept any patches
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Conclusion

• Initial goal

A language that gets down to the iron, runs at C 
speeds, and has no surprises in generated 
assembly, but at the same time guides you along 
to a clear, succinct and correct expression of 
complicated systems and algorithms.

• We feel we are there, and are prepared to live with 
rough edges for awhile
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Implementation Details
Fast Numerics

cdef ndarray<int 2d> A

arr{i,j}

int *data = A.data

int st0,st1

st0 = A.strides[0]/sizeof(int)

st1 = A.strides[1]/sizeof(int)

data[st0 * i + st1 * j]
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Implementation Details
Build

           Root.px
            /        \
       A.px      B.px
      /       \          \
AA.px    AB.px  |
                 |       /
             ABA.px

In Python could say

Root.A.AB.ABA.func

In Pyrex, same thing!

func could be cdef

Root must know all 
prototypes of ABA at 
compile time
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Implementation Details
Build

           Root.px
            /        \
       A.px      B.px
      /       \          \
AA.px    AB.px  |
                 |       /
             ABA.px*

If ABA changes

need Root recompile

must detect this 
before Root is 
imported, else it is 
too late

Must walk import tree in 
preorder


