
PNYLAB LLC

Lazy Man’s Cython

Have Your Cake and Eat It Too
Dan Gindikin and Peter Yianilos

6/13/2008

P

PNYLAB LLC

What Is Pex?

Preprocessor and build system for Cython

PNYLAB LLC

What We Wanted

A language that gets down to the iron, runs at C
speeds, and has no surprises in generated assembly,
but at the same time guides you along to a clear,
succinct and correct expression of complicated
systems and algorithms.

PNYLAB LLC

What We Wanted
More Concretely

PNYLAB LLC

What We Wanted
More Concretely
1.Ineffable quality

PNYLAB LLC

What We Wanted
More Concretely
1.Ineffable quality

• write complicated algorithm

PNYLAB LLC

What We Wanted
More Concretely
1.Ineffable quality

• write complicated algorithm

• either it is right the first time

PNYLAB LLC

What We Wanted
More Concretely
1.Ineffable quality

• write complicated algorithm

• either it is right the first time

• or it is very close, and easy to diagnose and fix

PNYLAB LLC

What We Wanted
More Concretely
1.Ineffable quality

• write complicated algorithm

• either it is right the first time

• or it is very close, and easy to diagnose and fix

2.Look at program assembly execution trace

PNYLAB LLC

What We Wanted
More Concretely
1.Ineffable quality

• write complicated algorithm

• either it is right the first time

• or it is very close, and easy to diagnose and fix

2.Look at program assembly execution trace

• most instructions have to do with essence of problem

PNYLAB LLC

Real Problem for the World

PNYLAB LLC

Real Problem for the World

• Stay easy, friendly, interpreter-like

PNYLAB LLC

Real Problem for the World

• Stay easy, friendly, interpreter-like

• Yet use all the cycles the computer has to offer to solve
the problem, not for overhead

PNYLAB LLC

Real Problem for the World

• Stay easy, friendly, interpreter-like

• Yet use all the cycles the computer has to offer to solve
the problem, not for overhead

• Feel this has not been addressed, and not for any good
technical reason

PNYLAB LLC

Discarded Candidates

PNYLAB LLC

Discarded Candidates

• No C, didn’t feel right in the 21st century

PNYLAB LLC

Discarded Candidates

• No C, didn’t feel right in the 21st century

• No C++, didn’t think we were smart enough

PNYLAB LLC

Within a Stone’s Throw

PNYLAB LLC

Within a Stone’s Throw

• Python, gets you everything except performance

PNYLAB LLC

Within a Stone’s Throw

• Python, gets you everything except performance

• huge deal, wasn’t clear there could be a language
that would corral you in the right direction

PNYLAB LLC

Within a Stone’s Throw

• Python, gets you everything except performance

• huge deal, wasn’t clear there could be a language
that would corral you in the right direction

• Pyrex, epsilon away, most of the heavy lifting done

PNYLAB LLC

Within a Stone’s Throw

• Python, gets you everything except performance

• huge deal, wasn’t clear there could be a language
that would corral you in the right direction

• Pyrex, epsilon away, most of the heavy lifting done

• fast attribute access, exception handling, resource
management - all the essentials for large system

PNYLAB LLC

Needful Things

PNYLAB LLC

Needful Things

• No gear shifting to C

PNYLAB LLC

Needful Things

• No gear shifting to C

• Stay Pythonic, see how far you can push it without
sacrificing performance

PNYLAB LLC

Needful Things

• No gear shifting to C

• Stay Pythonic, see how far you can push it without
sacrificing performance

• Naturally leads to a few desirables

PNYLAB LLC

Fast Numerics
Essential?

PNYLAB LLC

Fast Numerics
Essential?
• Already have linear algebra packages, but...

PNYLAB LLC

Fast Numerics
Essential?
• Already have linear algebra packages, but...

• If Python API, Python overhead makes using small
matrices infeasible

PNYLAB LLC

Fast Numerics
Essential?
• Already have linear algebra packages, but...

• If Python API, Python overhead makes using small
matrices infeasible

• May not have what you want

PNYLAB LLC

Fast Numerics
Essential?
• Already have linear algebra packages, but...

• If Python API, Python overhead makes using small
matrices infeasible

• May not have what you want

• Limits and contorts your thinking

PNYLAB LLC

Fast Numerics
Essential?
• Already have linear algebra packages, but...

• If Python API, Python overhead makes using small
matrices infeasible

• May not have what you want

• Limits and contorts your thinking

• you jump through hoops to vectorize

PNYLAB LLC

Fast Numerics
Essential?
• Already have linear algebra packages, but...

• If Python API, Python overhead makes using small
matrices infeasible

• May not have what you want

• Limits and contorts your thinking

• you jump through hoops to vectorize

• a priori, you only consider things that are vectorizable

PNYLAB LLC

Fast Numerics
Basic

PNYLAB LLC

Fast Numerics
Basic

In Pyrex

cdef int i

arr=numpy.zeros(n)

for i from 0<=i<n:

arr[i] = i

PNYLAB LLC

Fast Numerics
Basic

In Pyrex

cdef int i

arr=numpy.zeros(n)

for i from 0<=i<n:

arr[i] = i

Python speed

PNYLAB LLC

Fast Numerics
Basic

In Pyrex

cdef int i

arr=numpy.zeros(n)

for i from 0<=i<n:

arr[i] = i

Python speed

In Pex

cdef int i

cdef ndarray<int, n> arr

PNYLAB LLC

Fast Numerics
Basic

In Pyrex

cdef int i

arr=numpy.zeros(n)

for i from 0<=i<n:

arr[i] = i

Python speed

In Pex

cdef int i

cdef ndarray<int, n> arr

for i from 0<=i<n:

arr{i} = i

PNYLAB LLC

Fast Numerics
Basic

In Pyrex

cdef int i

arr=numpy.zeros(n)

for i from 0<=i<n:

arr[i] = i

Python speed

In Pex

cdef int i

cdef ndarray<int, n> arr

for i from 0<=i<n:

arr{i} = i

C speed, as if arr is int*

PNYLAB LLC

Fast Numerics
Basic

In Pyrex

cdef int i

arr=numpy.zeros(n)

for i from 0<=i<n:

arr[i] = i

Python speed

In Pex

cdef int i

cdef ndarray<int, n> arr

for i from 0<=i<n:

arr{i} = i

C speed, as if arr is int*

Easily >100x faster

PNYLAB LLC

Matrix Multiply
Pyrex

cdef void matmult(ndarray r,

ndarray A, ndarray B):

cdef int i,j,k

for i from 0<=i<A.dimensions[0]:

	 	 for j from 0<=j<B.dimensions[1]:

	 	 	 for k from 0<=k<A.dimensions[1]:

	 	 	 	 r[i,j]=r[i,j]+A[i,k]*B[k,j]

PNYLAB LLC

Matrix Multiply
Pex

cdef void matmult(ndarray<double 2d> r,

ndarray<double 2d> A, ndarray<double 2d> B):

cdef int i,j,k

for i from 0<=i<A.dimensions[0]:

	 	 for j from 0<=j<B.dimensions[1]:

	 	 	 for k from 0<=k<A.dimensions[1]:

	 	 	 	 r{i,j}=r{i,j}+A{i,k}*B{k,j}

PNYLAB LLC

Matrix Multiply
Performance

5 10 20 50 100 200
0

175

350

525

700

x Times Slower than Pex

Matrix Size (NxN) * (NxN)

Pyrex Python

PNYLAB LLC

Matrix Multiply
Performance

5 10 20 50 100 200
0

175

350

525

700

37

196

435

534 531 540

x Times Slower than Pex

Matrix Size (NxN) * (NxN)

Pyrex Python

PNYLAB LLC

Matrix Multiply
Performance

5 10 20 50 100 200
0

175

350

525

700

37

196

435

534 531 540

46

241

538

657
616 628

x Times Slower than Pex

Matrix Size (NxN) * (NxN)

Pyrex Python

PNYLAB LLC

The Gauss-Jordan Sweep
H = SWP[k]G

hkk = −1/gkk

hjk = hkj = gjk/gkk, j "= k
hjl = hlj = gjl − gjkgkl/gkk, j "= k and l "= k

SWP[1, 2, . . . , p]G =
[
−G−1

11 G−1
11 G12

G21G
−1
11 G22 −G21G

−1
11 G12

]
.

PNYLAB LLC

Fast Numerics - Sweep Alg.

PNYLAB LLC

Sweep Algorithm
Performance

5 10 20 50 100 200
0

125

250

375

500

x Times Slower than Pex

Matrix Size (NxN)

Pyrex Python

PNYLAB LLC

Sweep Algorithm
Performance

5 10 20 50 100 200
0

125

250

375

500

36

140

260

356 335
371

x Times Slower than Pex

Matrix Size (NxN)

Pyrex Python

PNYLAB LLC

Sweep Algorithm
Performance

5 10 20 50 100 200
0

125

250

375

500

36

140

260

356 335
371

47

169

329

434 414
450

x Times Slower than Pex

Matrix Size (NxN)

Pyrex Python

PNYLAB LLC

No Header Files

PNYLAB LLC

No Header Files

You write file.px

cdef class item:

cdef double x,y,z

cdef meth(me): pass

cdef func():pass

PNYLAB LLC

No Header Files

You write file.px

cdef class item:

cdef double x,y,z

cdef meth(me): pass

cdef func():pass

Pex produces file.pxd

cdef class item:

cdef double x,y,z

cdef meth(me)

cdef func()

PNYLAB LLC

No Header Files

You write file.px

cdef class item:

cdef double x,y,z

cdef meth(me): pass

cdef func():pass

Pex produces file.pxd

cdef class item:

cdef double x,y,z

cdef meth(me)

cdef func()

And file.pyx

<... implementation ...>

PNYLAB LLC

No Makefiles	

PNYLAB LLC

No Makefiles	

main.px

%pimport mod

PNYLAB LLC

No Makefiles	

main.px

%pimport mod

mod.px

%pimport submod

PNYLAB LLC

No Makefiles	

main.px

%pimport mod

mod.px

%pimport submod

submod.px

pass

PNYLAB LLC

No Makefiles	

main.px

%pimport mod

mod.px

%pimport submod

submod.px

pass

• In the shell

$ pex main.px

PNYLAB LLC

No Makefiles	

main.px

%pimport mod

mod.px

%pimport submod

submod.px

pass

• In the shell

$ pex main.px

• Or in Python

main=pex.pimport(‘main’)

PNYLAB LLC

No Makefiles	

main.px

%pimport mod

mod.px

%pimport submod

submod.px

pass

• In the shell

$ pex main.px

• Or in Python

main=pex.pimport(‘main’)

• submod gets compiled,
then mod, then main

PNYLAB LLC

No Makefiles	

main.px

%pimport mod

mod.px

%pimport submod

submod.px

pass

• In the shell

$ pex main.px

• Or in Python

main=pex.pimport(‘main’)

• submod gets compiled,
then mod, then main

• Feels interpreted

PNYLAB LLC

Automatically pickleable
cdef classes

PNYLAB LLC

Automatically pickleable
cdef classes

• They are!

• Pex generates the magic __reduce__ and __setstate__
methods

• Caveat: can not have C pointer or struct attributes

PNYLAB LLC

Discovered We Wanted More

PNYLAB LLC

Fast Slices

PNYLAB LLC

Fast Slices

cdef ndarray<double,(n,m,k)> arr

arr{:,1:7,:-4}

PNYLAB LLC

Fast Slices

cdef ndarray<double,(n,m,k)> arr

arr{:,1:7,:-4}

same as

arr[:,1:7,:-4]

but does not plumb through python runtime, just quick
creation of an ndarray header (in C code)

PNYLAB LLC

Faster Serialization

PNYLAB LLC

Faster Serialization

Pickling

PNYLAB LLC

Faster Serialization

Pickling

write

cdef class item: pass

pickle.dump(item(),open(‘file’,’w’))

PNYLAB LLC

Faster Serialization

Pickling

write

cdef class item: pass

pickle.dump(item(),open(‘file’,’w’))

read

x = pickle.load(open(‘file’))

PNYLAB LLC

Faster Serialization

Pickling

write

cdef class item: pass

pickle.dump(item(),open(‘file’,’w’))

read

x = pickle.load(open(‘file’))

Goes through Python, slow

PNYLAB LLC

Faster Serialization - FastIO

PNYLAB LLC

Faster Serialization - FastIO

write

cdef item x = item()

x._fastdump_(open(‘file’,’w’))

PNYLAB LLC

Faster Serialization - FastIO

write

cdef item x = item()

x._fastdump_(open(‘file’,’w’))

read

x = pex_create_uninitialized(item)

x._fastload_(open(‘file’))

PNYLAB LLC

Faster Serialization - FastIO

write

cdef item x = item()

x._fastdump_(open(‘file’,’w’))

read

x = pex_create_uninitialized(item)

x._fastload_(open(‘file’))

>12x faster than pickling, as fast as writing a C struct

PNYLAB LLC

FastIO
Limitations

PNYLAB LLC

FastIO
Limitations

• Can’t dump a Python list

PNYLAB LLC

FastIO
Limitations

• Can’t dump a Python list

• Can’t dump an ndarray of Python object

PNYLAB LLC

FastIO
Limitations

• Can’t dump a Python list

• Can’t dump an ndarray of Python object

• All attributes must be either primitive C types (int,
double, etc), or decorated ndarrays

PNYLAB LLC

FastIO
Limitations

• Can’t dump a Python list

• Can’t dump an ndarray of Python object

• All attributes must be either primitive C types (int,
double, etc), or decorated ndarrays

• This is just for the leafs of your object hierarchy

PNYLAB LLC

FastIO
Limitations

• Can’t dump a Python list

• Can’t dump an ndarray of Python object

• All attributes must be either primitive C types (int,
double, etc), or decorated ndarrays

• This is just for the leafs of your object hierarchy

• Still, can read/write mammoth data at C speed

PNYLAB LLC

Less Vigorous Coredump (1)

PNYLAB LLC

Less Vigorous Coredump (1)

Have main.px

cdef poof():

	 cdef int *p=NULL

	 p[0]

def func(): poof()

def main(): func()

PNYLAB LLC

Less Vigorous Coredump (1)

Have main.px

cdef poof():

	 cdef int *p=NULL

	 p[0]

def func(): poof()

def main(): func()

Guess what happens

$ pex main.px

PNYLAB LLC

Less Vigorous Coredump (2)

$ pex main.px
---- BEG BACKTRACE -----------
 Containing Executable File Instruction Addr Closest Symbol
 ./main.so 0x3ACA __pyx_pf_201_func

 /usr/lib/libpython2.3.so.1.0 0x43991 PyCFunction_Call
 /usr/lib/libpython2.3.so.1.0 0x20637 PyObject_Call
 /usr/lib/libpython2.3.so.1.0 0x721B0 PyEval_CallObjectWithKeywords
 /usr/lib/libpython2.3.so.1.0 0x205FE PyObject_CallObject

 ./main.so 0x37C3 __pyx_pf_201_main

 /usr/lib/libpython2.3.so.1.0 0x780A6 PyEval_EvalCodeEx
 /usr/lib/libpython2.3.so.1.0 0x7836D PyEval_EvalCode
 /usr/lib/libpython2.3.so.1.0 0x92952 PyRun_SimpleFileExFlags
 /usr/lib/libpython2.3.so.1.0 0x939A4 PyRun_AnyFileExFlags
 /usr/lib/libpython2.3.so.1.0 0x9869E Py_Main

 python 0x5B2 main

 /lib/tls/libc.so.6 0x14DE3 __libc_start_main

 python 0x501 (null)
 [START]
---- END BACKTRACE -----------

PNYLAB LLC

Bounds Checking

PNYLAB LLC

Bounds Checking

file main.px

cdef ndarray<int,n> arr

arr{n+1}

PNYLAB LLC

Bounds Checking

file main.px

cdef ndarray<int,n> arr

arr{n+1}

run with bounds checking (about 20 times slower)

PNYLAB LLC

Bounds Checking

file main.px

cdef ndarray<int,n> arr

arr{n+1}

run with bounds checking (about 20 times slower)

$ pex -b main.px

PNYLAB LLC

Bounds Checking

file main.px

cdef ndarray<int,n> arr

arr{n+1}

run with bounds checking (about 20 times slower)

$ pex -b main.px
Traceback (most recent call last):
 File "main.pyx", line 298, in main.main
 __px__ndarray_int_get1(arr,"arr",n+1,'n+1') ## arr{n+1} | main.px,4
IndexError: Out of bounds index access "n+1"==11 for dimension 1 of "arr" which has length 10

PNYLAB LLC

Compilation Configuration

PNYLAB LLC

Compilation Configuration

Setup link with external C libraries inside your file.px

%whencompiling:

	 env.cc.append('-I../../vector/include')

	 env.link.append('../../vector/vector.so')

PNYLAB LLC

Compilation Configuration

Setup link with external C libraries inside your file.px

%whencompiling:

	 env.cc.append('-I../../vector/include')

	 env.link.append('../../vector/vector.so')

Then bring in prototypes as usual

cdef extern from "vector.h": ...

PNYLAB LLC

General Pragma Mechanism

PNYLAB LLC

General Pragma Mechanism

def func(ndarray<int 2d> arr):

PNYLAB LLC

General Pragma Mechanism

def func(ndarray<int 2d> arr):

	 %whencompiling:

 scope.pragma_ndarray_bounds_checks = True

PNYLAB LLC

General Pragma Mechanism

def func(ndarray<int 2d> arr):

	 %whencompiling:

 scope.pragma_ndarray_bounds_checks = True

arr{1,n+1} # THROWS EXCEPTION

PNYLAB LLC

General Pragma Mechanism

def func(ndarray<int 2d> arr):

	 %whencompiling:

 scope.pragma_ndarray_bounds_checks = True

arr{1,n+1} # THROWS EXCEPTION

Turns on bounds checks

PNYLAB LLC

General Pragma Mechanism

def func(ndarray<int 2d> arr):

	 %whencompiling:

 scope.pragma_ndarray_bounds_checks = True

arr{1,n+1} # THROWS EXCEPTION

Turns on bounds checks

Works by scope, so here pragma applies only to func()

PNYLAB LLC

Conversion to and from
Dictionaries

PNYLAB LLC

Conversion to and from
Dictionaries
• cdef classes opaque to

Python

PNYLAB LLC

Conversion to and from
Dictionaries
• cdef classes opaque to

Python

• Pex generates _todict_
and _fromdict_ methods

PNYLAB LLC

Conversion to and from
Dictionaries
• cdef classes opaque to

Python

• Pex generates _todict_
and _fromdict_ methods

• Define in Pex, mod.px

cdef class item:

cdef int x,y

PNYLAB LLC

Conversion to and from
Dictionaries
• cdef classes opaque to

Python

• Pex generates _todict_
and _fromdict_ methods

• Define in Pex, mod.px

cdef class item:

cdef int x,y

• From Python

mod=pex.pimport(‘mod’)

x = mod.item()

PNYLAB LLC

Conversion to and from
Dictionaries
• cdef classes opaque to

Python

• Pex generates _todict_
and _fromdict_ methods

• Define in Pex, mod.px

cdef class item:

cdef int x,y

• From Python

mod=pex.pimport(‘mod’)

x = mod.item()

x._fromdict_({‘x’:7,’y’:12})

PNYLAB LLC

Conversion to and from
Dictionaries
• cdef classes opaque to

Python

• Pex generates _todict_
and _fromdict_ methods

• Define in Pex, mod.px

cdef class item:

cdef int x,y

• From Python

mod=pex.pimport(‘mod’)

x = mod.item()

x._fromdict_({‘x’:7,’y’:12})

print x._todict_()

out: {'y': 12, 'x': 7}

PNYLAB LLC

Gotchas

PNYLAB LLC

Gotchas

• Pex has no parser, regular expression based

PNYLAB LLC

Gotchas

• Pex has no parser, regular expression based

• Leads to annoying quirks, eg

def func(a, # comment

b):

PNYLAB LLC

Gotchas

• Pex has no parser, regular expression based

• Leads to annoying quirks, eg

def func(a, # comment

b):

• Joined to def func(a, # comment b):, so syntax error

PNYLAB LLC

Gotchas

• Pex has no parser, regular expression based

• Leads to annoying quirks, eg

def func(a, # comment

b):

• Joined to def func(a, # comment b):, so syntax error

• Also, no real type system

PNYLAB LLC

Off the Reservation

PNYLAB LLC

Off the Reservation

• pointers (tool of the devil)

• don’t use them

• don’t think you need to

• would like to prohibit them

• structs (use cdef classes instead)

PNYLAB LLC

Best of Both Worlds

PNYLAB LLC

Best of Both Worlds

• Luxuriate in Python decadence

PNYLAB LLC

Best of Both Worlds

• Luxuriate in Python decadence

• lists, tuples, dicts, itertools, anything goes

PNYLAB LLC

Best of Both Worlds

• Luxuriate in Python decadence

• lists, tuples, dicts, itertools, anything goes

• most of the time

PNYLAB LLC

Best of Both Worlds

• Luxuriate in Python decadence

• lists, tuples, dicts, itertools, anything goes

• most of the time

• Get down to the iron where it matters

PNYLAB LLC

Best of Both Worlds

• Luxuriate in Python decadence

• lists, tuples, dicts, itertools, anything goes

• most of the time

• Get down to the iron where it matters

• not much additional pain, lots of performance

PNYLAB LLC

Big Picture
Lessons Learned

PNYLAB LLC

Big Picture
Lessons Learned

• Have enough performance

PNYLAB LLC

Big Picture
Lessons Learned

• Have enough performance

• INCREFd memory management - fast, good

PNYLAB LLC

Big Picture
Lessons Learned

• Have enough performance

• INCREFd memory management - fast, good

• Compiler working hard not only OK, but what you want

PNYLAB LLC

Big Picture
Lessons Learned

• Have enough performance

• INCREFd memory management - fast, good

• Compiler working hard not only OK, but what you want

• With this setup, someone who only knows Python, can
write C efficient code

PNYLAB LLC

Big Picture
Lessons Learned

PNYLAB LLC

Big Picture
Lessons Learned
• Coredumps change feel of language

PNYLAB LLC

Big Picture
Lessons Learned
• Coredumps change feel of language

• completely

PNYLAB LLC

Big Picture
Lessons Learned
• Coredumps change feel of language

• completely

• sleep worse

PNYLAB LLC

Big Picture
Lessons Learned
• Coredumps change feel of language

• completely

• sleep worse

• waste life chasing down horrific memory bugs

PNYLAB LLC

Big Picture
Lessons Learned
• Coredumps change feel of language

• completely

• sleep worse

• waste life chasing down horrific memory bugs

• die younger

PNYLAB LLC

Big Picture
Lessons Learned
• Coredumps change feel of language

• completely

• sleep worse

• waste life chasing down horrific memory bugs

• die younger

• taken away from essence of problem

PNYLAB LLC

Big Picture
Going Forward

PNYLAB LLC

Big Picture
Going Forward
• Control coredumps

PNYLAB LLC

Big Picture
Going Forward
• Control coredumps

• Give up pointers, naked memory access (Hello Fortran!)

PNYLAB LLC

Big Picture
Going Forward
• Control coredumps

• Give up pointers, naked memory access (Hello Fortran!)

• not as horrible as it sounds

PNYLAB LLC

Big Picture
Going Forward
• Control coredumps

• Give up pointers, naked memory access (Hello Fortran!)

• not as horrible as it sounds

• have fast arrays, add in fast multiple value return

PNYLAB LLC

Big Picture
Going Forward
• Control coredumps

• Give up pointers, naked memory access (Hello Fortran!)

• not as horrible as it sounds

• have fast arrays, add in fast multiple value return

• the only thing you give up: blitting

PNYLAB LLC

Big Picture
Going Forward
• Control coredumps

• Give up pointers, naked memory access (Hello Fortran!)

• not as horrible as it sounds

• have fast arrays, add in fast multiple value return

• the only thing you give up: blitting

• allows safe mode guaranteed to catch corruption

PNYLAB LLC

Going Forward
Safe Mode

PNYLAB LLC

Going Forward
Safe Mode
• Runs within 3-4x times slower

PNYLAB LLC

Going Forward
Safe Mode
• Runs within 3-4x times slower

• Guaranteed to catch any memory corruption

PNYLAB LLC

Going Forward
Safe Mode
• Runs within 3-4x times slower

• Guaranteed to catch any memory corruption

• Set a mask at compile time

PNYLAB LLC

Going Forward
Safe Mode
• Runs within 3-4x times slower

• Guaranteed to catch any memory corruption

• Set a mask at compile time

• bounds checking

PNYLAB LLC

Going Forward
Safe Mode
• Runs within 3-4x times slower

• Guaranteed to catch any memory corruption

• Set a mask at compile time

• bounds checking

• uninitialized variable access

PNYLAB LLC

Going Forward
Safe Mode
• Runs within 3-4x times slower

• Guaranteed to catch any memory corruption

• Set a mask at compile time

• bounds checking

• uninitialized variable access

• keeps track of object creation, detects leaked cycles

PNYLAB LLC

Wishlist - Performance

PNYLAB LLC

Wishlist - Performance

• Pragma C_code_only

PNYLAB LLC

Wishlist - Performance

• Pragma C_code_only

• Fast operator overloading

PNYLAB LLC

Wishlist - Performance

• Pragma C_code_only

• Fast operator overloading

• Fast multiple return

PNYLAB LLC

Wishlist - Performance

• Pragma C_code_only

• Fast operator overloading

• Fast multiple return

• Fast comprehensions: arr={i*i for i from 0<=i<n if i%2}

PNYLAB LLC

Wishlist - Performance

• Pragma C_code_only

• Fast operator overloading

• Fast multiple return

• Fast comprehensions: arr={i*i for i from 0<=i<n if i%2}

• Tool color codes source based on whether it’s C or Py

PNYLAB LLC

Wishlist - Comfort

Now Want

cdef ndarray<int,(3,4)> arr cdef int arr{3,4}

cdef item x=item(arg1,arg2) cdef item x(arg1, arg2)

PNYLAB LLC

Wishlist - Comfort

Now Want

cdef ndarray<int,(3,4)> arr cdef int arr{3,4}

cdef item x=item(arg1,arg2) cdef item x(arg1, arg2)

PNYLAB LLC

Wishlist - Comfort

Now Want

cdef ndarray<int,(3,4)> arr cdef int arr{3,4}

cdef item x=item(arg1,arg2) cdef item x(arg1, arg2)

PNYLAB LLC

Wishlist - Comfort

Now Want

cdef ndarray<int,(3,4)> arr cdef int arr{3,4}

cdef item x=item(arg1,arg2) cdef item x(arg1, arg2)

And also want, efficient append to 1d ndarray

PNYLAB LLC

Status
Our Shop

PNYLAB LLC

Status
Our Shop

• 30 KLOC of Pex code (1.4 MLOC generated C)

PNYLAB LLC

Status
Our Shop

• 30 KLOC of Pex code (1.4 MLOC generated C)

• 5 people actively using Pex, more soon

PNYLAB LLC

Status
Our Shop

• 30 KLOC of Pex code (1.4 MLOC generated C)

• 5 people actively using Pex, more soon

• Business unforgiving, speed and quality essential

PNYLAB LLC

Status
Availability

• Python Software Foundation License (PSF)

• Works on Unix, Mac (all but coredump backtraces),
Windows - probably close, but who knows

• Get

•pexlang.sourceforge.net

http://pexlang.sourceforge.net/
http://pexlang.sourceforge.net/

PNYLAB LLC

Status
Immediate Future

• Want to stop heavy development for a year or so

• Happy to help move any features into Cython proper

• Happy to accept any patches

PNYLAB LLC

Conclusion

• Initial goal

A language that gets down to the iron, runs at C
speeds, and has no surprises in generated
assembly, but at the same time guides you along
to a clear, succinct and correct expression of
complicated systems and algorithms.

• We feel we are there, and are prepared to live with
rough edges for awhile

PNYLAB LLC

Implementation Details
Fast Numerics

cdef ndarray<int 2d> A

arr{i,j}

int *data = A.data

int st0,st1

st0 = A.strides[0]/sizeof(int)

st1 = A.strides[1]/sizeof(int)

data[st0 * i + st1 * j]

PNYLAB LLC

Implementation Details
Build

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px

In Python could say

Root.A.AB.ABA.func

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px

In Python could say

Root.A.AB.ABA.func

In Pyrex, same thing!

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px

In Python could say

Root.A.AB.ABA.func

In Pyrex, same thing!

func could be cdef

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px

In Python could say

Root.A.AB.ABA.func

In Pyrex, same thing!

func could be cdef

Root must know all
prototypes of ABA at
compile time

PNYLAB LLC

Implementation Details
Build

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px*

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px*

If ABA changes

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px*

If ABA changes

need Root recompile

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px*

If ABA changes

need Root recompile

must detect this
before Root is
imported, else it is
too late

PNYLAB LLC

Implementation Details
Build

 Root.px
 / \
 A.px B.px
 / \ \
AA.px AB.px |
 | /
 ABA.px*

If ABA changes

need Root recompile

must detect this
before Root is
imported, else it is
too late

Must walk import tree in
preorder

