
The Joy of Pex

v1.2

Dan Gindikin, Peter Yianilos, Joe Kilian

December 12, 2011

Abstract

Pex is a preprocessor and a build management system for Pyrex, or Cython. Among
other things, Pex adds the ability to conveniently write C fast numerics using numpy.ndarray,
frees you from Makefiles and header files, and makes your Pyrex classes serializable,
through both pickling and a faster scheme. To the user, Pex looks like a programming
language that is much like Python, but with additional syntax, through which it can be
made to run as fast as C in settings all the way from small numerical loops to large scale
systems.

Pyrex is a Python to C compiler with the added functionality of C fast function calls,
an object system with C fast attribute access and method invocation, and extra syntax
that allows mixing-in of C code. Cython is a close cousin to Pyrex, which adds many
convenient features. Most of the functionality of the language is in Pyrex, and its author
Greg Ewing deserves the majority of the credit.

1

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cython.org
http://www.python.org

CONTENTS CONTENTS

Contents

1 Introduction 5
1.1 What You Are Assumed to Know . 5
1.2 A Word of Caution . 5
1.3 Heroic Example . 6

2 Notation 7

3 Getting Started 7
3.1 Simple Example . 7
3.2 Slightly Less Simple Example . 8

4 Conventions 9

5 Interacting with Python 9

6 The main() function 10

7 Pimports 11
7.1 Simple . 11
7.2 Elaborate . 12

8 NDArray Decoration 13
8.1 Simple . 13
8.2 Elaborate . 14

9 Modest Cdef Classes 26
9.1 Simple . 26
9.2 Elaborate . 28

10 pex.pexruntime 45

11 pex create uninitialized() 45

12 Primitive C Types and Literals 46

13 C struct and typedef 48

14 Configuring Compilation 50
14.1 Pragmas and the scope Object . 52
14.2 pragma c only . 52

2

CONTENTS CONTENTS

15 Linking with External C Code 54

16 Backtraces on SIGSEGV, SIGFPE, SIGBUS, and SIGABRT 55

17 Command Line Usage 56

18 Compiling for Code Coverage 57

19 Distributing Code 58

20 Exceptions 59
20.1 Using Exceptions in Fast, Low Level Code . 60
20.2 Exception Traceback Formatting . 61

21 Efficiency 62
21.1 Annotate Mode . 62

22 Gotchas 63

23 Crossplatform Status 69

24 Acknowledgements 69

25 Conclusion 69

A Wrapping cdef functions 71
A.1 Wrapping cdef functions: the slow and simple way 71
A.2 Wrapping cdef functions via classes . 72
A.3 Obtaining generality via subclassing . 72
A.4 Do we need all of these classes? . 73
A.5 Wrapping Python objects as Pex objects . 75

B What is Pyrex? 76
B.1 Simple . 76
B.2 Elaborate . 76

C Differences Between Pex and Pyrex 82
C.1 Defining cdef Class Attributes . 82
C.2 Unsupported Features . 83

D Pragmas 83

3

CONTENTS CONTENTS

E Builtins 85

4

1 INTRODUCTION

1 Introduction

Python is a wonderful language that manages to guide you to correct expression of complex
algorithms through little code. Python has a great standard library, convenient fundamental
datatypes, clean and pleasant syntax, and an import mechanism with just it time compilation
(to bytecode), which proves one can have complex systems without makefiles or a complicated
build process. But it’s slow. On average, 50-100 times slower than C, for numerical code
100-400 times slower.

We felt that in principle there was no reason for Python to be this slow, and that by giving
up very little of what makes Python great, one could make most of this speed penalty go away.
Greg Ewing proved 95% of this point by writing Pyrex. However, in some ways Pyrex did not
feel very pythonic, there was a lot of overhead to writing in Pyrex that was absent in Python.
In order to write a complex system in Pyrex, one has to spend a lot of time on header files
and Makefiles, much like with a C project. One likely also has to write a significant amount
of custom code to enable objects to be serialized to disk, to print and to compare them. In
our experience with complex projects, this boilerplate soaks up a large fraction of the effort,
all the more painful since none of it has anything to do with the essence of the project. Pex
generates all of this boilerplate for you, and then also augments Pyrex to allow you to write
C fast numerics with a standard array datatype that is fully supported in Python – numpy’s
ndarray (see 8).

1.1 What You Are Assumed to Know

This document is not meant to be standalone: some knowledge of Python is assumed. A great
deal of functionality of Pex attempts to match Python semantics. Pex is mostly Pyrex, so if
you are not familiar with it, look through Appendix B and refer to Pyrex documentation as
needed. It may also be useful to skim Cython documentation, though it does not have much
at the moment (recall that Cython is a fork of the Pyrex project that Pex actually uses). We
will also refer to numpy, which is a substantial numerical library for python.

1.2 A Word of Caution

You should be aware that Pex is not yet a full language. This early stage of Pex was always
intended as a thin preprocessor layer for Pyrex. While immediately useful, this is our first,
learning, attempt at capturing a blend of Python elegance and C performance. You’ll no doubt
encounter difficult to chase down compilation errors and strange limitations, many stemming
from the fact that Pex does not employ a parser, but rather gets by on regular expressions.
Throughout this document we will attempt to give you a flavor of these gotchas.

5

http://www.python.org
 http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/version/Doc/LanguageOve rview.html
http://www.cython.org
http://numpy.scipy.org/

1.3 Heroic Example 1 INTRODUCTION

1.3 Heroic Example

The reason to put up with Pex’s and Pyrex’s various quirks is that you can get massive
performance improvements for not much difference in code. The sweep algorithm implemented
in Pex is about 75 times faster than the Python implementation for a 10x10 matrix, about
400 times faster for matrices of size 100x100 and above; as you can see in the diff of the two
codes, the differences are minimal. This example, while heroic, is not contrived, for numerics
code you can expect to see two orders of magnitude improvement in running time.

6

3 GETTING STARTED

2 Notation

Code snippets are given like so:

1 # l i v e s in f i l e ”main . px”
2 print "hello world"

and unless otherwise specified are assumed to live in the file main.px (.px means a Pex file).
Shell commands are prefixed with a “$”, thus to run the above snippet, we say:

$ pex main.px

hello world

Usually we will just show the resulting output

out hello world

On occasion it is convenient to specify an entire directory tree, which we will do like so:

1 pkg/__init__.py

2

3 pkg/mod.py

4 a_string = "foo bar baz"

5

6 main.px

7 from pkg import mod

8

9 print mod.a_string

Here we have a main.px file in the current directory, and a directory pkg with an empty file
init .py and a Python module file mod.py. The resulting output when main.px is ran, is:

out foo bar baz

out

Unless otherwise specified, if there is a main.px or main.py, it’s what is ran.

3 Getting Started

3.1 Simple Example

The venerable “hello world” program in Pex:

7

3.2 Slightly Less Simple Example 3 GETTING STARTED

1 def main ():

2 print "hello world"

out

out hello world

We ran it with “pex main.px” (see 2). Here is what happens behind the scenes:

(i.) Pex creates files main.pyx and main.pxd from main.px

(ii.) Pyrex produces main.c from main.pyx and main.pxd

(iii.) from here the C toolchain takes over:

(a) gcc makes main.o from main.c

(b) gcc makes main.so from main.o. The file main.so is an importable Python module.

(iv.) now that main.so is made, Pex does the exact equivalent of the following Python code

1 #!/ usr / b in / python
2 import main

3 main.main()

Essentially, after generating the Pyrex .pyx, .pxd files from the .px file, Pex ran the following
sequence of commands:

$ pyrex -I main.pyx

$ gcc -c -fPIC -O6 -fno-strict-aliasing -I/usr/include/python2.3 main.c

$ gcc -shared -lm main.o -o main.so

$ python -c "import main; main.main()"

3.2 Slightly Less Simple Example

Here, in accordance with software engineering best practices, we split the functionality of
hello world into two modules:

1 mod.px

2 def func ():

3 return "hello world"

4

5 main.px

8

5 INTERACTING WITH PYTHON

6 %pimport mod

7

8 def main ():

9 print mod.func()

out

out hello world

The main module, uses %pimport to bring in another module, called mod and call its function
(see 7 about pimports). To see what happened behind the scenes, in excruciating detail, run
pex -vall -F main.px (the -vall flag sets verbosity to all, -F forces a rebuild of everything).

4 Conventions

Throughout the manual, we will be referring to code sections running at “C speed” or “Python
speed”. Take x=x+3 for example. If x is a C int, this is effectively a C expression – it runs
at C speed, but if x is a python object, this code runs at Python speed, getting translated
into Python library calls along the lines of PyNumber Add(x,PyInt FromLong(3)). As a rough
estimate, Python speed is 1-2 orders of magnitude slower than C, usually closer to 2.

We will also refer to compile time and runtime. Compile time is everything that happens
to turn a .px file into a .so. Runtime is when the .so is loaded by Python, and your code is
actually executing.

5 Interacting with Python

In Pex, you can import Python modules, and use them just as you would in Python. In
particular here is an example that shows you how to access the command line:

1 import sys

2

3 def main ():

4

5 i f sys.argv [1]==’Marco’:

6 print ’Polo’

7

8 e l i f sys.argv [1]==’Polo’:

9 print ’Marco ’

running it from the shell we have:

$ pex main.px

Traceback (most recent call last):

9

6 THE MAIN() FUNCTION

File "main.pyx", line 71, in main.main

if sys.argv[1]==’Marco’: ## main.px,5

$ pex main.px Marco

Polo

$ pex main.px Polo

Marco

6 The main() function

The main() function has the same semantics as Python’s if name ==’ main ’: clause. If
your module has a main() function, and is executed from the command line, your main() is
called. If your module is imported by something, main() is not called; for example if you have

1 mod.px

2 def main ():

3 print "hello world"

4

5 main.px

6 %pimport mod

and run pex main.px, mod’s main() is never called.

Code in the topmost scope is executed at import time, just like in Python, so in the
following example, we do get output:

1 mod.px

2 print "hello world"

3

4 main.px

5 %pimport mod

out

out hello world

:-(Do not write if name ==’ main ’: in a Pex file, Pyrex defines name , but it never defines
it to be " main ", thus this if statement will happily compile, but will never be true.

10

7 PIMPORTS

7 Pimports

7.1 Simple

Imports work in Pex in the same way they do in Python, except you say %pimport instead of
import. In the simplest form you say,

1 %pimport <module_name >

You may also use more complicated forms, like in Python, the full syntax is the following:

1 %[from <package_or_module >] pimport <name > [as <alias >] [,<name > [as <alias >]]*

thus any of the following is valid:

1 pkg/__init__.py

2

3 pkg/submod.px

4

5 def func ():

6 pass
7

8 cdef c lass Klass:

9 pass
10

11 mod.px

12

13 cdef func ():

14 pass
15

16 c lass Klass:

17 pass
18

19 main.px

20

21 %pimport mod , pkg.submod

22

23 %pimport mod as foo , pkg.submod as bar

24

25 %from pkg.submod pimport func , Klass as baz

26

27 %from mod pimport func as gah , Klass

To import a Pex module from Python, do:

1 #!/ usr / b in / python
2 import pex

3 mod=pex.pimport("mod") # t h i s impor t s t he f i l e mod . px

11

7.2 Elaborate 7 PIMPORTS

Imports are a weak point for Pex, Pyrex, and to some extent Python. There are some
problem cases, some with errors easy to figure out, some not. Make sure you read the Gotchas
section 7.2.2 below.

7.2 Elaborate

7.2.1 Search Path

In addition to honoring PYTHONPATH environment variable when searching for modules, pex
also pays attention to the PEXPATH environment variable, which has the same semantics as
PYTHONPATH.

7.2.2 Gotchas

:-(Like for Python, your Pex package directories need to contain an init .py file in order to
be importable, an empty init .py file is sufficient. This is really easy to forget, and really
annoying to discover, so be careful.

:-(This is a trick for troubleshooting your imports. Sometimes you can have name collisions
between modules, and because Python memoizes imports by module name, your import will
not give you the module object you expect. Suppose at some point earlier in the program,
the module foo was imported, all later import foo statements will return this module, even
if you are attempting to import a different foo, and according to the semantics of the search
path can expect to get it. When this happens, you’ll start seeing errors like “module object
doesn’t have expected attribute”, etc. A useful way of debugging is to just print foo at the
point of the error, which shows what file the module came from, and print dir(foo), which
shows the module’s attributes.

A particularly nasty, and not uncommon, manifestation of this problem is when foo is
a directory that happens to have an init .py file, which makes the directory importable.
Worse yet, an init .pyc alone is also sufficient. To fix, remove init .py AND init .pyc.

:-(Can not do pimport *.

:-(If you wish to subclass a class that you import from another module, you must pimport that
module without using from or as; do this:

1 %pimport pkg.mod

2 cdef c lass derived(pkg.mod.base_class):

12

8 NDARRAY DECORATION

3 pass

not this:

1 %from pkg pimport mod

2 cdef c lass derived(mod.base_class):

3 pass

:-(Can not do pimport <module>.<var>, can only do pimport <module> and then refer to the
variable as <module>.<var>, or from <module> pimport <var>.

:-(Though %pimport looks like a regular statement, it is not, it causes things to happen both at
compile time and at runtime. This means that the following piece of code will not do what
you may expect:

1 i f 0:

2 %pimport mod

The if 0: is purely runtime statement, it does not actually bind the %pimport. Here, the
%pimport is still processed at compile time, but not at runtime, and bad things will happen.

8 NDArray Decoration

8.1 Simple

In Python, [] accesses are slow. For example, make yourself a numpy array (henceforth referred
to as “ndarray”), and then access it like so:

1 arr = numpy.zeros (10)

2 arr [1]

There is a lot of work that happens behind the scenes for that arr[1], here is just the partial
C class stack:

PyObject_Call

PyEval_CallObjectWithKeywords

PyObject_GetItem

All this overhead makes the [] access two orders of magnitude slower than if arr was a C
double arr[] array. Pex lets you get that speed back by saying arr{1} instead, though before
you are allowed to do so, you must “decorate” arr with some type information:

13

8.2 Elaborate 8 NDARRAY DECORATION

1 cdef ndarray<double ,10> arr

2 arr{1}

this arr{1} happens at C speed, as if arr was a C int * . Similarly for multiple dimensions:

1 def main ():

2 cdef ndarray<int ,(2,3,4)> mat

3

4 cdef int i,j,k

5

6 for 0 <= i < dimlen(mat ,0):

7 for 0 <= j < dimlen(mat ,1):

8 for 0 <= k < dimlen(mat ,2):

9

10 mat{ i , j , k} = i+j+k

11

12 print mat

out

out [[[0 1 2 3]

out [1 2 3 4]

out [2 3 4 5]]

out

out [[1 2 3 4]

out [2 3 4 5]

out [3 4 5 6]]]

Supported types for a decorated ndarray are char,short,int,double, and object.

8.2 Elaborate

8.2.1 Decorating NDArrays

There are a few ways ndarrays may become decorated. The simplest is when an ndarray comes
in as an argument to a function:

1 def func(ndarray<short 2d> arr)

The general syntax is ndarray<TYPE DIMENSIONALITYd>. In the above example a 2 dimensional
array of shorts is passed in. The type and dimensionality are checked, and if you try to pass
in the wrong thing, an NDArrayDecorationError exception will be thrown.

There are also two ways to declare decorated ndarrays, the first is non-allocating:

1 cdef ndarray<double 1d> arr

14

8.2 Elaborate 8 NDARRAY DECORATION

The intention is that at some point later, the variable will be assigned an ndarray of the
right type and dimensionality. Such assignments are typechecked, and an exception will be
raised if the type or dimensionality is wrong. If you access your array before allocating it with
something like arr = numpy.zeros(3,’d’), you will SEGFAULT (see 22 for complete discussion
of this type of error).

DEATH!
The other flavor of decorated declaration is allocating:

1 cdef ndarray<int ,3> arr

2 cdef ndarray<char ,(3,17)> arr2d

The above is equivalent to

1 cdef ndarray<int 1d> arr = numpy.zeros(3,’l’)

2 cdef ndarray<char 2d> arr2d = numpy.zeros ((3,17),’b’)

The syntax for one dimensional ndarray declaration is ndarray<TYPE, DIMENSION1>, for multi-
dimensional: ndarray<TYPE, (DIMENSION1,...,DIMENSIONn)>.

The last way to decorate an ndarray is the following:

1 %decorate(arr , <double 3d>)

It is provided as a hack, to work around the fact that Pex does only shallow type analysis.
For example, if an object has an attribute that is a decorated ndarray, you will not be able to
get the fast {} accesses outside of that object:

1 cdef c lass item:

2 def __init__(me):

3 cdef ndarray<int ,10> me.arr

4

5 def main ():

6 cdef item x = item()

7 print x.arr{0}

out NDArrayDecorationError

out 0601_ndarray_MUST_FAIL.px,7

out --

out 5 : def main():

out 6 : cdef item x = item()

out >>>>> 7 : print x.arr{0}

out --

out Access to unknown decorated ndarray "x.arr".

out Known decorated ndarrays in scope: [].

Using %decorate you can do:

15

8.2 Elaborate 8 NDARRAY DECORATION

1 cdef c lass item:

2 def __init__(me):

3 cdef ndarray<int ,10> me.arr

4

5 def main ():

6 cdef item x = item()

7 %decorate(x.arr , ndarray<int 1d>)

8 print x.arr{0}

out

out 0

You must do the same to access a decorated ndarray attribute of a base class:

1 cdef c lass base:

2 def __init__(me):

3 cdef ndarray<int ,10> me.arr

4

5 cdef c lass item(base):

6 def func(me):

7 %decorate(me.arr , ndarray<int 1d>)

8 print me.arr{0}
9

10 item (). func()

out

out 0

Note that you can only use %decorate with a typed, cdef’d ndarray (see B.2.4 for discussion
about typed vs untyped objects).

8.2.2 Fast creation of NDArrays

Creating ndarrays using the numpy API is slow, the creation calls, like numpy.zeros(), have
to plumb through the Python runtime. Pex provides a faster alternative:

1 ndarray_zeros1(d1, type)

2 ndarray_zeros2(d1, d2, type)

3 ndarray_zeros3(d1, d2, d3, type)

4 ndarray_zeros4(d1, d2, d3, d4, type)

5 ndarray_zeros5(d1, d2, d3, d4, d5, type)

6 ndarray_zeros6(d1, d2, d3, d4, d5, d6, type)

7 ndarray_zeros7(d1, d2, d3, d4, d5, d6, d7, type)

8 ndarray_zeros8(d1, d2, d3, d4, d5, d6, d7, d8, type)

where type is one of the decoration types char,short,int,double, or object. Here is an
example:

16

8.2 Elaborate 8 NDARRAY DECORATION

1 arr = ndarray_zeros3 (17,10,5,’double ’)

The allocating declarations, e.g. cdef ndarray<double,(17,10,5)> arr, call these functions.
For something even faster, there are also these calls

1 ndarray_empty1(d1, type)

2 ndarray_empty2(d1, d2, type)

3 ndarray_emtpy3(d1, d2, d3, type)

4 ndarray_emtpy4(d1, d2, d3, d4, type)

5 ndarray_empty5(d1, d2, d3, d4, d5, type)

6 ndarray_empty6(d1, d2, d3, d4, d5, d6, type)

7 ndarray_empty7(d1, d2, d3, d4, d5, d6, d7, type)

8 ndarray_empty8(d1, d2, d3, d4, d5, d6, d7, d8, type)

They have the same API as ndarray zeros calls, but do not zero out the contents of the
allocated ndarray, returning the memory as is. Thus the allocating declaration:

1 cdef ndarray<double , 10> arr

is equivalent to

1 cdef ndarray<double 1d> arr = ndarray_zeros1 (10,’double ’)

and is slower than

1 cdef ndarray<double 1d> arr = ndarray_empty1 (10,’double ’)

For arrays of dimensionality bigger than 8, you are left with calling the Python numpy API.

8.2.3 Fast Decorated Slices

Slicing ndarrays – arr[4:7] – is slow. Things have to plumb through the Python runtime to
get to the fast numpy code that creates the slice (note that an ndarray slice is not a copy,
but a “view” into the parent array). Pex provides fast, “decorated” slices – arr{4:7}. The
general idea is that for each dimension you specify a start:stop. Either start or stop can
be negative, if so it is counted off the end. Either can be missing, if start is missing it is
assumed to be zero, if stop is missing it is assumed to n, where n is length of the dimension.
Either can go off the ends of the array, and is clipped to be inside [0,n]. These semantics come
from Python, see python documentation for a more complete discussion. Python slices can
also have a 3rd argument – stride – but this is not supported for decorated slices. Here are
some examples:

1 def main ():

17

http://www.python.org/docs

8.2 Elaborate 8 NDARRAY DECORATION

2 cdef ndarray<int , 10> arr

3 cdef int i

4

5 for 0<=i<10: arr{ i} = i

6

7 print " arr\n",arr

8 print "\n {3:7}\n",arr{3:7}
9 print "\n {:7}\n",arr{ :7}

10 print "\n {:}\n",arr{ :}
11 print "\n { -7:}\n",arr{−7:}
12 print "\n {-7:-2}\n",arr{−7:−2}

out

out arr

out [0 1 2 3 4 5 6 7 8 9]

out

out {3:7}

out [3 4 5 6]

out

out {:7}

out [0 1 2 3 4 5 6]

out

out {:}

out [0 1 2 3 4 5 6 7 8 9]

out

out {-7:}

out [3 4 5 6 7 8 9]

out

out {-7:-2}

out [3 4 5 6 7]

similarly for multiple dimensions:

1 def main ():

2 cdef ndarray<object ,(2,4)> arr

3 cdef int i

4

5 for 0<=i<4: arr[0,i] = ’a’ + str(i)

6 for 0<=i<4: arr[1,i] = ’b’ + str(i)

7

8 print " arr\n",arr

9 print "\n {0:1 ,2:4}\n",arr{0:1 ,2:4}
10 print "\n {:1 ,2:}\n",arr{ : 1 ,2 :}
11 print "\n {:,:}\n",arr{ : , : }
12 print "\n {1 ,0:1}\n",arr{1 ,0:1}
13 print "\n {0,-2:}\n",arr{0,−2:}
14 print "\n {:,2}\n",arr{ : ,2}

out

out arr

18

8.2 Elaborate 8 NDARRAY DECORATION

out [[a0 a1 a2 a3]

out [b0 b1 b2 b3]]

out

out {0:1,2:4}

out [[a2 a3]]

out

out {:1,2:}

out [[a2 a3]]

out

out {:,:}

out [[a0 a1 a2 a3]

out [b0 b1 b2 b3]]

out

out {1,0:1}

out [b0]

out

out {0,-2:}

out [a2 a3]

out

out {:,2}

out [a2 b2]

The following example demonstrates a point of usual confusion: you may slice out the same
number of elements, but depending on whether you take a number or a range of 1 number,
the resulting slice will differ in the number of dimensions:

1 def main ():

2 cdef ndarray<object ,(2,4)> arr

3 cdef int i

4

5 for 0<=i<4: arr[0,i] = ’a’ + str(i)

6 for 0<=i<4: arr[1,i] = ’b’ + str(i)

7

8 print " arr\n",arr

9

10 print "\n {0 ,0:4}\n", arr{0 , 0:4}
11 print "\n {0:1 ,0:4}\n",arr{0:1 ,0:4}
12

13 print "\n {0:2 ,1}\n", arr{0:2 ,1}
14 print "\n {0:2 ,1:2}\n",arr{0:2 ,1:2}

out

out arr

out [[a0 a1 a2 a3]

out [b0 b1 b2 b3]]

out

out {0,0:4}

out [a0 a1 a2 a3]

out

19

8.2 Elaborate 8 NDARRAY DECORATION

out {0:1,0:4}

out [[a0 a1 a2 a3]]

out

out {0:2,1}

out [a1 b1]

out

out {0:2,1:2}

out [[a1]

out [b1]]

8.2.4 The object type

One of the supported types for decorated ndarrays is object, it is different from the other
types char,short,int,double. The others are primitive C types, whereas each object is a
Python object, and thus has an associated reference count, which is how garbage collection
works in Python. Pex does the right thing for the reference count as objects are read and
written to the array.

8.2.5 The char type

Here is an example on how to go back and forth between python strings and decorated ndarrays
of characters. You may wish to do this, for example, to send strings quickly over sockets or
to files using fastio (see 9.2.7):

1 import numpy ,copy

2

3 def main ():

4 cdef ndarray<char 1d> arr

5

6 string = "hello world"

7

8 arr = copy.copy(numpy.frombuffer(string , dtype=’b’))

9 print arr

10 print arr{7}
11 c_printf("%c\n",arr{7})
12

13 s = arr.tostring ()

14 print s

out

out [104 101 108 108 111 32 119 111 114 108 100]

out 111

out o

out hello world

20

8.2 Elaborate 8 NDARRAY DECORATION

Note the copy.copy call above, it is necessary because numpy.frombuffer returns a reference
to the immutable python string, and a decorated ndarray must be writeable.

8.2.6 Type Checking

When you assign to a decorated ndarray, or when you create one by decorating an argument to
a function, the operation is type checked at runtime to make sure an ndarray of the right type
and dimensionality is coming in. In the following example we attempt to assign an ndarray
of an incorrect type:

1 def main ():

2 cdef ndarray<double 1d> arr

3 arr = ndarray_empty1 (10,’int’)

out Traceback (most recent call last):

out File "pex", line 236, in ?

out exit_code=module.main()

out File "main.pyx", line 236, in main.main

out ...

out NDArrayDecorationError: Type Mismatch: unexpected typecode for ndarray ’arr’

out declared type: ’double’

out expected typecode: ’d’

out actual typecode: ’l’

The performance penalty for this type checking is not so bad, but if you are concerned
about it, you may turn it off with a pragma:

pragma purpose default

pragma ndarray type check† On/off flag for typechecking
of decorated ndarrays

True

†set with %whencompiling: scope.pragma ndarray type check = [True | False]

1 %whencompiling: scope.pragma_ndarray_type_check = False

2

3 def main ():

4 cdef ndarray<double 1d> arr

5 arr = ndarray_empty1 (10,’int’)

:-(If you wish to turn off typechecking of function arguments, be sure to put the pragma before
the function prototype:

21

8.2 Elaborate 8 NDARRAY DECORATION

1 %whencompiling:
2 scope.pragma_ndarray_type_check = False

3

4 cdef func(ndarray<double 1d> arr): pass
5

6 %whencompiling:
7 scope.pragma_ndarray_type_check = True

Were you to put the pragma in the function body, checks turn off for assignments inside the
body, but not for function arguments.

8.2.7 Bounds Checking

pragma purpose default

pragma ndarray bounds checks† On/off flag for bounds check-
ing of {} accesses to decorated
ndarrays

False

†set with %whencompiling: scope.pragma ndarray bounds checks = [True | False]

Normal {} accesses to decorated ndarrays are not bounds checked - hence their speed. They
are just like C array accesses, you may read off the end of the array and thus get garbage, or
write off the end of the array and thus corrupt memory. Pex allows you to turn on bounds
checking, all the {} then become slow (a 50x50 matrix multiply runs 20 times slower with
bounds checks on), but safe, the array bounds are checked for every access. Turning on
bounds checking is probably the first thing to try if your program coredumps.

Here we access off the end of the array, and without bounds checking, get no errors:

1 def main ():

2 cdef ndarray<double ,10> arr

3 x=arr{11}

and here is the same code with bounds checking turned on:

1 %whencompiling:
2 scope.pragma_ndarray_bounds_checks = True

3

4 def main ():

5 cdef ndarray<double ,10> arr

6 x=arr{11}

22

8.2 Elaborate 8 NDARRAY DECORATION

out Traceback (most recent call last):

out File "/res/home/dg/git/plat/pex/pex", line 334, in <module>

out 332 |

out 333 | tr(1,"calling %s.main()"%name)

out >> 334 | exit_code=module.main()

out File "0611_ndarray_MUST_FAIL.px", line 6, in 0611_ndarray_MUST_FAIL.main

out 4 | def main():

out 5 | cdef ndarray<double,10> arr

out >> 6 | x=arr{11}

out <type ’exceptions.IndexError’>: Out of bounds index access "11"==11 for dimension 1 of "arr" which has length 10

There are two ways to turn on bounds checking: using the pragma, as shown above, or
passing -b to the Pex command line. If you use the -b flag, first do a pex -clean and then
run with pex -b. This will ensure that all of the modules used in the running program are
compiled with bounds checking.

:-(If you wish to turn on bounds checking, all assignments to elements of decorated ndarrays
must appear as the first thing on a line, do this:

1 %whencompiling: scope.pragma_ndarray_bounds_checks = True

2 i f 1:

3 arr{ i} = 7

instead of this:

1 %whencompiling: scope.pragma_ndarray_bounds_checks = True

2 i f 1: arr{ i} = 7

8.2.8 Gotchas

:-(To get the lengths of an ndarray, use the builtin dimlen(arr,dimension) function instead of SLOW
.shape attribute, do this:

1 cdef int i,j

2 for 0<=i<dimlen(arr ,0):

3 for 0<=j<dimlen(arr ,1):

4 pass

not this:

1 cdef int i,j

2 for 0<=i<arr.shape [0]:

3 for 0<=j<arr.shape [1]:

4 pass

23

8.2 Elaborate 8 NDARRAY DECORATION

.shape is a Python tuple, getting it as an attribute of an ndarray is slow, and accessing its
elements is slow, whereas dimlen() is a C function, and thus runs at C speed.

:-(Do not use negative indices with {} accesses. If you do, you’ll access garbage memory from

DEATH!

before the beginning of the ndarray, same as would happen with a C array. Turning on bounds
checks (see 8.2.7) will detect this error.

:-(Can not have global decorated ndarrays.

:-(Can not do

1 tup = (3,4)

2 cdef ndarray<double ,tup > arr

must do

1 tup = (3,4)

2 cdef ndarray<double ,(tup[0],tup[1])> arr

:-(If you have a decorated ndarray as an attribute of a cdef class, you can not access it with {}
outside of the class, or even in subclasses. This is a result of Pex’s lack of an honest type
system. See 8.2.1 for how to overcome this limitation with %decorate.

:-(Can not use {} accesses inside declarations, e.g. can not do cdef int x=arr{i}.

:-(You must make sure index variables you use with {} accesses are cdef’d ints, otherwise things SLOW
will be slow:

1 for 0<=i<dimlen(arr ,0):

2 func(arr{ i})

In the snippet above, i is a Python object, and gets converted to a C int for every {} access,
and thus every time through the loop. Instead do:

1 cdef int i

2 for 0<=i<dimlen(arr ,0):

3 func(arr{ i})

:-(Use the following loop form: SLOW

1 cdef int i

2 for 0<=i<dimlen(arr ,0):

24

8.2 Elaborate 8 NDARRAY DECORATION

3 func(arr{ i})

instead of

1 cdef int i

2 for i in range(dimlen(arr ,0)):

3 func(arr{ i})

Otherwise things will be slow (this is Pyrex syntax that allows you to write C fast loops).

DEATH!:-(To allow the fast {}-style accesses, behind the scenes Pex unpacks certain internals of the
ndarray into local variables. As a consequence, if an ndarray is re-assigned, the internals have
to be unpacked again, else bad things will happen. For this reason Pex attempts to track
the re-assignments, so that it can unpack the internals immediately after it happens. If Pex
misses the change to the array, the local variables become stale, and every subsequent {}
access corrupts memory.

Pex is able to track simple assignments, such as:

1 arr = x

and compound assignments, such as:

1 arr , arr2 = x, y

Any other way of assigning to a decorated ndarray variable will cause a memory corruption.

For example,

1 cdef ndarray<int 1d> arr

2 for arr in arrs:

3 arr{0}=7

Pex is not able to see for arr in arrs: as a re-assignment, and so does not appropriately
unpack the new ndarray each time through the loop. You can instead do:

1 cdef ndarray<int 1d> arr

2 for i in range(len(arrs)):

3 arr = arrs[i]

4 arr{0} = 7

Here is another way memory can get corrupted, suppose you have a decorated ndarray
that is a class attribute. From inside the class method, you call another class method which
re-assigns the attribute:

25

9 MODEST CDEF CLASSES

1 cdef c lass item:

2 def __init__(me):

3 cdef ndarray<int ,10> me.arr

4 def change(me):

5 me.arr = ndarray_zeros1 (5,’int’)

6 def func(me):

7 me.change ()

8 me.arr{3}
9 x=item()

10 x.func()

The above corrupts memory, you need to add me.arr = me.arr after me.change() in func to
force the internals to be re-unpacked after the call to change.

If you discover that a decorated array is being re-assigned without Pex being able to track
it, this is the recommended hack to fix things: assign the array to itself, as in arr = arr. Pex
will find this assignment, and will unpack the internals of the array appropriately.

:-(Pex gives you two ways to declare class attributes (see C.1 for full discussion), in the class
preamble, and inside the init method. Allocating ndarrays declarations, however, may
only be declared inside the init method, therefore do this:

1 cdef c lass item:

2 def __init__(me):

3 cdef ndarray<double ,10> me.arr

not this:

1 cdef c lass item:

2 cdef ndarray<double ,10> arr

Non-allocating declarations you may still put in the preamble:

1 cdef c lass item:

2 cdef ndarray<double 1d> arr

9 Modest Cdef Classes

9.1 Simple

When you write a cdef class in Pyrex (see B.2.3 about why you may want to), a lot of
the niceties you get for free with Python classes go away. Some of the downsides: you can’t
print the resulting objects, can’t compare them for equality, can’t access their attributes from

26

9.1 Simple 9 MODEST CDEF CLASSES

Python, and most importantly can’t automatically write/read them from disk (“pickling” in
pythonese). Pex brings a lot of these niceties back, provided your cdef class is “modest” – its
attributes come from a restricted set of types.

To make yourself a modest cdef class, restrict your attributes to the following types:

(i.) bool, char, uchar, short, ushort, int, uint, int64, uint64, float, double: these
are primitive C types (see 12 for more info)

(ii.) object: this is Pyrex’s type name for any Python object (list, tuple, class, etc)

(iii.) <any other cdef class>: this is foo if you have cdef class foo: defined somewhere.

Thus the following is a modest cdef class (note that you can have any python object (list,
tuple, dictionary, etc) be an attribute of a cdef class with type object):

1 cdef c lass modest:

2 def __init__(me):

3 cdef int me.i

4 cdef object me.ob = [1, 2, 3, 4]

and the following is immodest:

1 cdef c lass immodest:

2 cdef int *modesty_violating_pointer

If you further restrict yourself to only the primitive C types and decorated ndarrays of
any simple numerical type, e.g. anything but object (see 8 about decoration), you get an
“unspoiled” class, which gets all the niceties of a modest class, and also fastio (see 9.2.7) – a
serialization method that is about 10-12 times faster than pickling. Here is an unspoiled class:

1 cdef c lass unspoiled:

2 def __init__(me):

3 cdef int me.i

4 cdef ndarray<char ,(10 ,10) > me.arr

and here is one that, while modest, is not unspoiled:

1 cdef c lass modest_but_not_unspoiled:

2 def __init__(me):

3 cdef ndarray me.arr

This class is spoiled because the ndarray me.arr is not decorated.

27

9.2 Elaborate 9 MODEST CDEF CLASSES

9.2 Elaborate

9.2.1 One Pragma to Rule Them All

Each of the niceties described below, has its own pragma switch, but there is also one pragma
that turns off all of the automatically generated methods described in this section:

pragma purpose default

pragma gen all off† On/off flag to control the
generation of all convenience
methods for modest and un-
spoiled classes

True

†set with %whencompiling: scope.pragma gen all off = [True | False]

9.2.2 str () – conversion to a string

cdef class requirements: modesty

pragma purpose default

pragma gen strmeth† On/off flag to control the
generation of the str ()

method

True

†set with %whencompiling: scope.pragma gen strmeth = [True | False]

The str () method is called by Python when you attempt to print an object, or convert
it to a string. If it is absent, a less exciting string is produced, showing the object’s type
and memory address. For example, this is what you get when you turn off str () method
generation:

1 %whencompiling: scope.pragma_gen_strmeth=False

2

3 cdef c lass item:

4 cdef int x

5

6 print item()

out

out <0804_strmeth.item object at 0xa19ac2c>

If you leave it in, you get:

28

9.2 Elaborate 9 MODEST CDEF CLASSES

1 cdef c lass item:

2 cdef int x

3

4 print item()

out

out c{x = 0}

One possible reason to turn it off, is if you intend to write a custom str () method.

9.2.3 equal ()

cdef class requirements: modesty

pragma purpose default

pragma gen equalmeth† On/off flag to control the
generation of the equal ()

method

True

†set with %whencompiling: scope.pragma gen equalmeth = [True | False]

This method allows you to compare two modest cdef classes:

1 cdef c lass item:

2 cdef int i

3

4 cdef item x=item(), y=item()

5

6 print x._equal_(y)

7 y.i=7

8 print x._equal_(y)

out

out 1

out 0

Gotchas

:-(Unless all of your attributes are primitive C types, the equal () will happen at Python SLOW
speeds. In principle, for attributes that are cdef classes or ndarrays it could be C fast, but at
the moment isn’t.

:-(This is a cdef method, and so not callable from Python directly. However you can access it
through == and !=, see next section.

29

9.2 Elaborate 9 MODEST CDEF CLASSES

9.2.4 richcmp () – Python comparisons

cdef class requirements: modesty

pragma purpose default

pragma gen richcmpmeth† On/off flag for the generation
of the richcmp () method

True

†set with %whencompiling: scope.pragma gen richcmpmeth = [True | False]

When Pyrex sees a == or != comparison between two cdef classes, it calls the richcmp ()

method of one of the objects. If this method is absent, the two objects are compared based
on their memory address, thus even if two instances have every attribute the same, they will
never be equal:

1 %whencompiling: scope.pragma_gen_richcmpmeth = False

2

3 cdef c lass item:

4 cdef int i

5

6 cdef item x=item(), y=item()

7 print x,y

8 print x==y

out

out c{i = 0} c{i = 0}

out False

Pex generates this method to call the generated equal () method (see previous section),
and this causes the == and != checks to happen based on the actual contents of the two objects,
not just their memory addresses:

1 cdef c lass item:

2 cdef int i

3

4 cdef item x=item(), y=item()

5 print x,y

6 print x==y

out

out c{i = 0} c{i = 0}

out True

Gotchas

:-(These == and != checks are slow because they plumb through Python. SLOW

30

9.2 Elaborate 9 MODEST CDEF CLASSES

9.2.5 todict (), fromdict () – dict coercion

cdef class requirements: modesty

pragma purpose default

pragma gen dictcoercion† On/off flag for the genera-
tion of the todict () and
fromdict () dictionary coer-
cion methods

True

†set with %whencompiling: scope.pragma gen dictcoercion = [True | False]

Attributes of cdef classes are not visible from Python. This is illustrated by the following
example where we are not able to access the attribute i from main.py:

1 mod.px

2 cdef c lass item:

3 cdef int i

4

5 main.py

6 import pex

7 mod = pex.pimport(’mod’)
8 ob = mod.item()

9 print ob.i

out Traceback (most recent call last):

out File "main.py", line 4, in <module>

out print ob.i

out AttributeError: ’mod.item’ object has no attribute ’i’

To overcome this limitation, Pex generates two methods for your cdef classes: todict ()

returns the cdef class’ attributes in a dictionary, fromdict () sets them from a dictionary:

1 mod.px

2 cdef c lass item:

3 cdef int i

4

5 main.py

6 import pex

7 mod = pex.pimport(’mod’)
8

9 ob = mod.item()

10 print ’ob ’,ob

11

12 d = ob._todict_ ()

13 print ’dict’,d

31

9.2 Elaborate 9 MODEST CDEF CLASSES

14

15 ob._fromdict_({ ’ i ’ : 17})
16 print ’ob ’,ob

out

out ob c{i = 0}

out dict {’i’: 0}

out ob c{i = 17}

Gotchas

:-(Any extra keys in the dictionary that is passed into fromdict () are ignored. For example
ob. fromdict ({’i’: 17, ’rubberchicken’: True}) would have worked just as well in the
above example.

9.2.6 reduce (), setstate () – Python pickling

cdef class requirements: modesty

pragma purpose default

pragma gen pickle† On/off flag for the genera-
tion of the reduce () and
setstate () pickling meth-

ods

True

†set with %whencompiling: scope.pragma gen pickle = [True | False]

Normal Pyrex cdef classes are not “picklable” (pickling is Python’s term for serialization
– writing and reading objects from disk). Pex automatically generates two special Python
methods reduce () and setstate (), which make your cdef classes picklable. It is unlikely
you’ll ever need to call these functions directly.

A thing of note is that the Python’s object copy machinery also works through these
methods, and so their presence makes your cdef classes copiable:

1 import copy

2

3 cdef c lass item:

4 cdef int i

5

6 cdef item x = item()

7 x.i = 3

8 y = copy.copy(x)

32

9.2 Elaborate 9 MODEST CDEF CLASSES

See the next section for a faster serialization method, fastio. Pickling uses fastio when possible
to make things run faster, so its generation must be turned on for pickling to work.

Performance

The main thing that determines the speed of pickling for a cdef class is the type of its
attributes. Given an attribute, if it is of a simple C type (bool, char, uchar, short, ushort,

int, uint, int64, uint64, float, double), it can be written directly at C speed. If it is of
type object, or any other type other than decorated ndarray (including another cdef class,
or undecorated ndarray), it must go through the standard python pickling machinery and is
written ”pythonically”, which is usually significantly slower. Decorated ndarrays split into
several cases. Decorated ndarrays of objects are always written pythonically. Decorated
ndarrays of any other type (char, short, int, double), can be written direct or pythonically,
depending on the number of objects that refer to them. Given such a decorated ndarray, if
only the object whose attribute it is has a reference to the ndarray, it will be written direct, if
more than one, it will go pythonically. For example, in the following code, arr will be written
direct,

1 import pex.pxpickle

2

3 cdef c lass item:

4 cdef ndarray<char 1d> arr

5

6 def main ():

7 cdef item i

8 i = item()

9 i.arr = ndarray_zeros1 (5,’char’)

10 pex.pxpickle.dumps(i)

but in the following, it will be written pythonically:

1 import pex.pxpickle

2

3 cdef c lass item:

4 cdef ndarray<char 1d> arr

5

6 def main ():

7 cdef item i = item()

8 i.arr = ndarray_zeros1 (5,’char’)

9 obj = i.arr # t h i s adds another r e f e r e n c e on i . arr
10 pex.pxpickle.dumps(i)

In the above example, the array ”i.arr” is also referred to by ”obj”, two references.

The number of references to objects is also what determines the amount of memory the
pickling process uses. Roughly speaking, any object with more than one reference on it needs

33

9.2 Elaborate 9 MODEST CDEF CLASSES

to be ”memoized” by the pickler, which costs approximately 70 bytes of memory. This can
be significant, if you have 10 million objects with more than 1 reference, you’ll need roughly
700MB of memory to pickle them out. Sometimes even objects with 1 reference on them get
memoized, this usually happens because the pickling process creates temporary objects which
create extra references on your objects, and these extra references cause them to be memoized
(unnecessarily, but it still costs memory).

In order to avoid having objects memoized because of these temporary references, pex
comes with a slightly modified cPickle module, called pex.pxpickle. It is fully compatible
with the usual python pickle format, and has the same API as cPickle. When you use it in
conjunction with lots of cdef class objects pickling will use significantly less memory overhead
than if you use pickle or cPickle, so the recommendation is to use it in all cases. You may
also want to turn off the garbage collector when pickling things out, as this may speed up
running time around 30%. Given below is the suggested way to pickle out your objects:

1 import pex.pxpickle ,gc

2 b = <some object of yours >

3 gc.disable ()

4 pex.pxpickle.dumps(b)

5 gc.enable ()

6 gc.collect ()

The following table summarizes how various attributes of cdef classes are written, and how
and if they are memoized. Below, R refers to the reference count – the number of references on
an object. A numpy array is considered to be well-behaved if arr.flags & (NPY C CONTIGUOUS

| NPY OWNDATA | NPY WRITEABLE | NPY ALIGNED).

pythonic write Attribute Type memoized

never SIMPLE C TYPE never

always object if R>1

if R>1 or array not
well-behaved

ndarray<{char|short|int|double}> if R>1

always ndarray<object> if R>1

always object in ndarray<object> if R>1 or parent
ndarray not well-
behaved or parent
ndarray has R>1

The above only refers to objects that are attributes of cdef classes, and only when the

34

9.2 Elaborate 9 MODEST CDEF CLASSES

pex.pxpickle module is used. If you have, say, a list of objects, or use pickle or cPickle these
rules do not apply.

If you are wondering about the exact set of objects memoized by the pickler, you can
examine it like so:

1 import pex.pxpickle

2 b = <some object of yours >

3 fd = StringIO.StringIO ()

4 p = pex.pxpickle.Pickler(fd)

5 p.dump(b)

6 memoized_objects = [tup [1] for tup in p.memo.values ()]

Gotchas

:-(PICKLING OUT CDEF CLASSES IS NOT A THREAD SAFE OPERATION!

:-(If you have a list of cdef class objects you wish to pickle, do not dump them one at a time
like so:

1 import pex.pxpickle

2

3 cdef c lass item:

4 cdef int i

5

6 list = [item() for i in range (100)]

7

8 file = open(’somefile ’,’w’)

9 for ob in list: pex.pxpickle.dump(ob,file)

10 file.close ()

Instead do the whole list at once:

1 import pex.pxpickle

2

3 cdef c lass item:

4 cdef int i

5

6 list = [some_cdef_class () for i in range (100)]

7

8 file = open(’somefile ’,’w’)

9 pex.pxpickle.dump(list ,file)

10 file.close ()

Pex dumps a type signature once for every dump invocation, thus once for every object when
you write them one at a time. This unnecessarily, and possibly substantially, increases your

35

9.2 Elaborate 9 MODEST CDEF CLASSES

storage requirements. In the second case, when you write the entire list at once, the type
signature is written only once.

9.2.7 fastload (), fastdump (), memload (), memdump () – fastio

cdef class requirements: must be unspoiled

pragma purpose default

pragma gen fastio† On/off flag for the gener-
ation of the fastdump (),
fastload (), memload (),
and memdump () fastio meth-
ods

True

†set with %whencompiling: scope.pragma gen fastio = [True | False]

If your cdef class is unspoiled, in addition to being modest (see 9.1), Pex will generate
the four methods, fastdump (), fastload (), memload (), and memdump () which implement a
serialization scheme called “fastio”. It is slightly less convenient to use than pickling, but is 10-
12 times faster writing to files, more so writing directly to memory. fastdump (), fastload ()

write cdef class objects to files (and special file-like objects), memload (), and memdump ()

serialize directly to memory.

Here is an example showing basic usage when dealing directly with memory:

1 cdef c lass item:

2 cdef int i

3

4 cdef item x = item()

5

6 cdef ndarray buf = ndarray_zeros1 (10,’char’)

7

8 nbytes = x._memdump_(buf.data ,dimlen(buf ,0))

9 assert nbytes == 6, "2 for checksum , 4 for the int"

10

11 cdef item y = item()

12

13 nbytes = y._memload_(buf.data ,dimlen(buf ,0))

14

15 # you can a l s o use char ∗ d i r e c t l y
16 cdef char buf2 [10]

17 x._memdump_(buf2 ,10)

18

19 # i f you want to j u s t g e t t he number o f b y t e s t he

36

9.2 Elaborate 9 MODEST CDEF CLASSES

20 # ob j e c t would t a k e to s e r i a l i z e do the f o l l o w i n g
21 nbytes = x._memdump_(NULL ,-1)

The example above shows the several different ways to use these functions: using an ndarray
for the buffer, using a regular char array, and just getting the size it would take to serialize an
object without allocating any memory. The functions throw an IOError if the buffer passed
in is not large enough.

Here is an example showing basic usage when writing to files, or file-like objects:

1 cdef c lass item:

2 cdef int i

3

4 cdef item x = item()

5

6 x._fastdump_(open(’tempfile ’,’w’))

7

8 cdef item y = item()

9

10 y._fastload_(open(’tempfile ’))

One common use case is to read in several cdef class objects using fastio. In order to call
the fastload () method, you must have an instance of the cdef class, but it makes no sense
to create one if its contents are immediately overwritten by the fastload () call. For this
reason Pex provides the pex create uninitialized() function (see 11), which instantiates a
cdef class without calling its constructor – all attributes that are primitive C types are set to
zero, all attributes that are Python objects are set to None. The following example illustrates
this case:

1 import pickle

2

3 cdef c lass item:

4 cdef int i

5

6 # WRITE
7

8 list = [item() for i in range (100)]

9

10 cdef item x

11

12 file = open(’tempfile ’,’w’)

13 pickle.dump(len(list),file)

14 for x in list: x._fastdump_(file)

15 file.close ()

16

17 # READ
18

37

9.2 Elaborate 9 MODEST CDEF CLASSES

19 list = []

20

21 cdef item y

22

23 file = open(’tempfile ’)

24 n = pickle.load(file)

25 for i in range(n):

26 y = pex_create_uninitialized(item)

27 y._fastload_(file)

28 list.append(y)

29 file.close ()

You can also use fastio to send cdef classes over a socket:

1 datatype.px

2 cdef c lass item:

3 cdef int i

4 cdef double d

5

6 client.px

7 % from datatype pimport item

8

9 import socket

10

11 HOST = ’localhost ’

12 PORT = 33838

13

14 i f 1: # se tup connec t ion
15 s = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

16 s.connect ((HOST ,PORT))

17

18 name = str(s)

19 sfile = PyFile_FromFile(c_fdopen(s.fileno(),’w’),

20 name , ’w’, c_fclose)

21

22 cdef item x = item()

23

24 x._fastdump_(sfile)

25

26 server.px

27 % from datatype pimport item

28

29 import socket

30

31 HOST = ’localhost ’

32 PORT = 33838

33

34 i f 1: # se tup connec t ion
35 s = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

38

9.2 Elaborate 9 MODEST CDEF CLASSES

36 s.bind((’’, PORT))

37 s.listen (1)

38 s_conn , addr = s.accept ()

39

40 name = str(s_conn)

41 sfile = PyFile_FromFile(c_fdopen(s_conn.fileno(),’r’),

42 name , ’r’, c_fclose)

43

44 cdef item x = pex_create_uninitialized(item)

45

46 x._fastload_(sfile)

47

48 print ’received ’,x

In addition to taking a python file object as an argument, fastload and fastdump

methods also can take an instance of a class derived from pex.pexruntime.BaseFastIOStream,
which you may write in order to serialize to things other than files or sockets. Here is an
example that allows you to directly read and write objects to zip files using zlib. This class is
included in pex.pexruntime (see 10).

1 cdef extern from "zlib.h":

2 ctypedef void* gzFile

3 gzFile gzopen(char *path , char *mode) except exits

4 int gzread(gzFile file , void *buf , unsigned len) except exits

5 int gzwrite(gzFile file ,void *buf , unsigned len) except exits

6 int gzclose(gzFile file) except exits

7 char* gzerror(gzFile file , int *errnum) except exits

8

9 cdef c lass GzFile_FastIOStream(pex.pexruntime.BaseFastIOStream):

10 %whencompiling: scope.pragma_gen_all_off = True

11

12 def __init__(me,path ,mode=’r’):

13 cdef void *me.stream = gzopen(path , mode)

14

15 cdef void fastwrite(me, void *data , int nbytes):

16 gzwrite(me.stream ,data ,nbytes)

17

18 cdef void fastread(me, void *data , int nbytes):

19 gzread(me.stream ,data ,nbytes)

20

21 def close(me):

22 gzclose(me.stream)

23 me.stream = NULL

24

25 def __dealloc__(me):

26 i f me.stream <> NULL:

27 me.close ()

28

39

9.2 Elaborate 9 MODEST CDEF CLASSES

29 cdef c lass item:

30 cdef int x

31

32 def main ():

33 cdef item x = item()

34

35 gzfile = GzFile_FastIOStream(’foo.gz’,’w’)

36 x._fastdump_(gzfile)

37 gzfile.close ()

38

39 gzfile = GzFile_FastIOStream(’foo.gz’)

40 x._fastload_(gzfile)

The fastio stream classes also define a pickleload and pickledump methods that can read and
write any python objects to the stream. You don’t need to implement these methods yourself,
they are in BaseFastIOStream and work once you define fastwrite and fastread in the derived
class.

Gotchas

:-(FASTIO/MEMDUMP IS NOT A THREAD SAFE OPERATION!

:-(These are cdef methods, and as such, are not visible from Python.

:-(If you have an attribute that is a decorated ndarray that has become non-contiguous in
memory, the fastdump () will fail. An ndarray may become non-contiguous if it is a slice from
another ndarray with a slice step bigger than 1. You may perhaps restore its contiguousness
with:

me.arr=PyArray_ContiguousFromAny(me.arr,<NPY_TYPES>self.arr.decsr.type_num,0,0)

but you are really out of bounds with this one. Note that if this works, it will be a full copy
of the array, and also you may only do this from Pex, not sure how to do it from Python.

DEATH!
:-(Here is a most natural mistake to make, and it is guaranteed to produce a coredump. It is so

natural that you’ll probably make it even after reading this text,
1 cdef item y

2 y._fastload_(open(’somefile ’))

The above coredumps because y, while declared, was never instantiated (see 22 for complete
discussion of this kind of an error). Before calling y. fastload () you must first instantiate y

like this y=item() or this y=pex create uninitialized(item).

40

9.2 Elaborate 9 MODEST CDEF CLASSES

9.2.8 deepcopy () – fast copy

cdef class requirements: must be unspoiled

pragma purpose default

pragma gen deepcopy† On/off flag for the generation
of the deepcopy () method

True

†set with %whencompiling: scope.pragma gen deepcopy = [True | False]

This function provides a fast copy method for an unspoiled cdef class:

1 cdef c lass item:

2 cdef int i

3 cdef ndarray<double 1d> arr

4

5 def __init__(self):

6 self.i = 17

7 self.arr = ndarray_zeros1 (5,’double ’)

8 self.arr{2} = 12

9

10 cdef item x, y

11

12 x = item()

13 y = pex_create_uninitialized(item)

14

15 print ’before copy’,x,y

16

17 y._deepcopy_(x)

18

19 print ’ after copy’,y

out

out before copy c{arr = array([0., 0., 12., 0., 0.]), i = 17} c{arr = None, i = 0}

out after copy c{arr = array([0., 0., 12., 0., 0.]), i = 17}
SLOW

If one of the attributes is an ndarray, and it is of a different size in the destination class
than in the source, it will be reallocated. Since you are presumably using this copy method
for speed, you should be aware of this, as the constant re-allocation can slow things down, as
can thrashing if the size of the ndarray keeps changing.

9.2.9 hash () – Python hashing

cdef claqss requirements: none

41

9.2 Elaborate 9 MODEST CDEF CLASSES

pragma purpose default

pragma gen hashmeth† On/off flag for the generation
of the hash () method

True

†set with %whencompiling: scope.pragma gen hashmeth = [True | False]

This function returns the memory address of the object. This function is needed because
if an object has a richcmp () method, but not a hash () method, Python will not allow
the object to serve as a key to a hash:

1 %whencompiling: scope.pragma_gen_hashmeth = False

2

3 cdef c lass item:

4 cdef int i

5

6 d = {}
7

8 x = item()

9

10 d[x] = ’foo’

Traceback (most recent call last):

<-----------------<snip>-------------------<snip>------------------>

File "0814_hash_MUST_FAIL.pyx", line 168, in 0814_hash_MUST_FAIL

d[x] = ’foo’ ## 0814_hash_MUST_FAIL.px,10

TypeError: unhashable type

Gotchas

:-(This is not a real hash, it’s just the memory address of the object.

9.2.10 typesig ()

cdef class requirements: none

You’ll probably never need to call this function directly, it is used by the pickling and
fastio machinery. Here it is in any case, it gives the C type signatures of all the attributes:

1 cdef c lass item:

2 def __init__(self):

3 cdef int self.i

4 cdef object self.ob

5 cdef ndarray<double 7d> self.arr

42

9.2 Elaborate 9 MODEST CDEF CLASSES

6

7 print item (). _typesig_ ()

out

out ((’int’, ’i’), (’ndarray’, ’arr’, ’double’, 7), (’object’, ’ob’))

9.2.11 How Things Can Go Wrong

Some of the methods described above depend on each other, for example str () on todict ().
If you run Pex with the -W command line flag, you will get warnings if you’ve turned off some
method, but not the methods that depend on it:

1 %whencompiling:
2 scope.pragma_gen_dictcoercion = False

3

4 cdef c lass item:

5 cdef int i

$ pex -W main.px

[WARNING] main.px,4: __str__ method of cdef class "item" will not work,

it depends on _todict_ method, whose generation was turned off with a

pragma

[WARNING] main.px,4: pickling of cdef class "item" will not work, it

depends on dict coercion methods, whose generation was turned off with a

pragma

The more usual way things can go wrong is if you make your cdef class immodest, for
example by giving it an attribute that is a pointer. This will not cause a compile time
error – all the methods will still be generated – but they’ll just be stubs that throw a
PexNotGeneratedException:

1 cdef c lass item:

2 cdef int *modesty_violation_pointer

3

4 item (). _todict_ ()

out PexNotGeneratedError

out

out Method not auto-generated by pex because this class has attributes that pex

out doesn’t know how to convert to python objects. Problem attributes:

out

out int *modesty_violation_pointer

out

43

9.2 Elaborate 9 MODEST CDEF CLASSES

out Possible solutions: you may change this class to only use supported attribute

out types (which still may not work for some problems):

out

out bool, char, uchar, short, ushort, int, uint, int64, uint64, float, double,

out cdef classes, python objects

out

out or turn off all pex processing with

out

out %whencompiling: scope.pragma_gen_dictcoercion = False

out

out and then implement this method yourself.

out

Recall that for a modest class, an attribute, among other things, can be another cdef

class. When Pex sees an attribute declaration cdef <sometype> attr and <sometype> isn’t a
primitive C type or object, Pex assumes it is another cdef class. In fact, it could be something
else, a struct for example, but Pex can’t figure this out because it does not perform a deep
enough level of analysis. This case leads to cryptic compile time errors, like so:

1 cdef extern from "stdio.h":

2 cdef struct FILE:

3 pass
4

5 cdef c lass item:

6 cdef FILE f

out PyrexError

out python cython.py main.pyx

out

out Error converting Pyrex file to C:

out --

out def _todict_(me): ## made by pex

out d = {

out ’f’: me.f,

out ^

out --

out main.pyx:78:19: Cannot convert ’FILE’ to Python object

out

out Error converting Pyrex file to C:

out --

out def _fromdict_(me,dict): ## made by pex

out me.f = dict[’f’]

out ^

out --

out main.pyx:83:21: Cannot convert Python object to ’FILE’

out

44

11 PEX CREATE UNINITIALIZED()

out Error converting Pyrex file to C:

out --

out cdef bool equal=cTrue

out

out if me.f <> other.f: equal = cFalse

out ^

out --

out main.pyx:97:20: Invalid types for ’!=’ (FILE, FILE)

9.2.12 How to Write Your Own

If you wish to write your own implementation for any of the methods above, turn the method(s)
off with a pragma. For pickling or fastio, you’ll probably want to look at Pex generated code
first, to get an idea of what the method is supposed to do.

10 pex.pexruntime

This is a module that is available to all pex modules by default, and includes certain convenient
cdef classes and methods. For the moment it has an abstract base class for fastio serialization,
as well as one concrete implementation that allows serialization to zip files, see 9.2.7 for more
information.

11 pex create uninitialized()

Sometimes, as in the case of fastio (see 9.2.7), you may wish to quickly instantiate your cdef

class foo:, without going through the constructor. You may do so using pex create uninitialized(foo),
like so:

1 cdef c lass item:

2 cdef int i

3 cdef char c

4 cdef object h

5 cdef ndarray arr

6

7 def __init__(me): print "Woe! I shall never be called"

8

9 print pex_create_uninitialized(item)

out

out c{arr = None, c = 0, h = None, i = 0}

45

12 PRIMITIVE C TYPES AND LITERALS

All attributes that are primitive C types are set to zero, all attributes that are Python objects
are set to None.

Gotchas

:-(Though technically pex create uninitialized() may take any type object as its one argument,
do not call it with anything other than a Pyrex cdef class, e.g. don’t do this:

1 c lass item: pass
2 pex_create_uninitialized(item)

Bad things may happen.

12 Primitive C Types and Literals

Pex supports the following primitive C types:

bool 1 byte +
char, uchar 1 byte +
short, ushort 2 bytes ++
int, uint 4 bytes ++++
int64, uint64 8 bytes ++++++++
float 4 bytes ++++
double 8 bytes ++++++++

Here is an example where we print the size of the type and the maximum value:

1 # MAX VALUE
2 cdef bool b = cTrue

3 cdef char c = 0x7f

4 cdef uchar uc = 0xff

5 cdef short s = 0x7fff

6 cdef ushort us = 0xffff

7 cdef int i = 0x7fffffff

8 cdef uint ui = 0xffffffff

9 cdef int64 i64 = 0x7fffffffffffffffL

10 cdef uint64 ui64 = 0xffffffffffffffffUL

11 cdef float f = 3.40282346638528860e+38

12 cdef double d = 1.79769313486231570e+308

13

14 print ’bool’, sizeof(bool), b

15 print ’char’, sizeof(char), c

16 print ’uchar ’, sizeof(uchar), uc

17 print ’short ’, sizeof(short), s

18 print ’ushort ’, sizeof(ushort), us

46

12 PRIMITIVE C TYPES AND LITERALS

19 print ’int’, sizeof(int), i

20 print ’uint’, sizeof(uint), ui

21 print ’int64 ’, sizeof(int64), i64

22 print ’uint64 ’, sizeof(uint64), ui64

23 print ’float ’, sizeof(float), f

24 print ’double ’, sizeof(double), d

out

out bool 1 1

out char 1 127

out uchar 1 255

out short 2 32767

out ushort 2 65535

out int 4 2147483647

out uint 4 4294967295

out int64 8 9223372036854775807

out uint64 8 18446744073709551615

out float 4 3.40282346639e+38

out double 8 1.79769313486e+308

All variables of these types are pure C variables, all arithmetic and boolean expressions
with them are compiled directly to C, and so run at C speed, but see 21 for situations when
such variables are upcast to Python and so become slow.

In the example above, we added the suffix “L” to the constant we assigned to i64. Were
we to do this:

1 cdef int64 i64 = 0x7ffffffffffffff

the C compiler would complain with something like:

warning: integer constant is too large for ‘‘long’’ type

The C compiler does not like integer constants (also known as “literals”) that are bigger than
what can fit into 4 bytes. To appease it, we append the “L”:

1 cdef int64 i64 = 0x7fffffffffffffffL

An unsigned int can be bigger than a signed int, so when assigning something big to a
uint64, append a “UL”:

1 cdef uint64 ui64 = 0xffffffffffffffffUL

Now, lets say you are ready to get serious, and want to push some big numbers around,
numbers even bigger than 8 bytes. Python supports arbitrary precision integers, to specify
such a literal, add the suffix “pyL” to your number:

47

13 C STRUCT AND TYPEDEF

1 x = 191561942608236107294793378084303638130997321548169216 pyL

which will get translated to the C code:

PyLong_FromString("191561942608236107294793378084303638130997321548169216",0,0)

All operations on such numbers will be much slower than operations on primitive C types.

Gotchas

:-(Do not confuse these types with the ones available for ndarray decoration (see 8 for those).

:-(If you do the following:

1 x = 3

2 cdef uchar c

3 c = x

out 1005_uchar_and_ushort.c: In function init1005_uchar_and_ushort:

out 1005_uchar_and_ushort.c:1375: warning: comparison is always false due to limited range of data type* pex.build done

you get a strange compiler error. This happens because behind the scenes your code is
translated to the following C code (roughly):

1 PyObject *x = PyInt_FromLong (3);

2 uchar c = PyInt_AsLong(x); i f (c==-1) { <some error handling> }

Of course c can never be less than zero, being unsigned and all, hence the compiler warning.
This is a Pyrex limitation, heed your compiler warning and code around this somehow, for
example assign first to an int and if that succeeds assign to your unsigned variable. Same
problem exists for ushort, but due to Pyrex’s internal architecture, not for uint or uint64.

13 C struct and typedef

Pyrex supports C struct and typedef, Pex support is more limited. You may use them, just
as in Pyrex, as global or local variables, but you may not have them as function arguments
for cdef functions or as cdef class attributes. If you need to pass them around, do so as void

pointers and then cast them locally to the right type. Here is an example:

1 cdef extern from "time.h":

2

48

13 C STRUCT AND TYPEDEF

3 ctypedef int time_t

4

5 cdef struct tm:

6 int tm_sec , tm_min , tm_hour , tm_mday , tm_mon

7 int tm_year , tm_wday , tm_yday , tm_isdst

8

9 time_t time(time_t *) except exits

10 tm *localtime(time_t *) except exits

11

12 cdef c lass item:

13

14 cdef void* vt

15

16 def __init__(self):

17 self.vt = c_malloc(sizeof(tm))

18

19 def save_time(self):

20 cdef tm *s, *t

21 cdef time_t x

22

23 x = time(NULL)

24 s = localtime (&x)

25

26 t = <tm*>self.vt

27

28 c_memcpy(t, s, sizeof(tm))

29

30 def day_of_year(self):

31 cdef tm *t

32

33 t = <tm*>self.vt

34

35 return t[0]. tm_yday

36

37 def __dealloc__(self):

38 i f self.vt <> NULL:

39 c_free(self.vt)

40

41 def main ():

42 x = item()

43 x.save_time ()

44 print x.day_of_year ()

out

out 69

Note that if you malloc in the contructor, as in the example above, you must make a special
dealloc method which is called at object destruction, and put in the correponding free,

49

14 CONFIGURING COMPILATION

else you’ll leak memory. Also note that because you have a void* as a cdef class attribute,
you lose all of the niceties described in Section 9, such as the ability to pickle or convert
instances of the class to strings.

14 Configuring Compilation

Using the %whencompiling directive, you can change the flags passed to the C compiler or
linker, set pragmas, and in general execute arbitrary Python code at the time your .px file is
compiled into a .so file. For example:

1 %whencompiling: print "hello world"

ran with

$ pex main.px

hello world

causes Pex to execute your print statement while compiling this main.px into a main.so. If
you run Pex again, the print will not be executed:

$ pex main.px

$

because main.so was already compiled.

Pex gives you access to two objects in your %whencompiling code, env and scope; here is
what they contain:

1 %whencompiling:
2 from pprint import pprint

3

4 print ’ENV’

5 pprint(env.__dict__)

6 print
7

8 print ’SCOPE ’

9 pprint(scope.__slots__)

10 print

out ENV

out {’cc’: [’gcc’,

out ’-c’,

out ’-fPIC’,

out ’-O6’,

50

14 CONFIGURING COMPILATION

out ’-fno-strict-aliasing’,

out ’-I/usr/local/include/python2.6’,

out ’-I/res/home/dg/git/plat/pex’,

out ’-I/opt/lib/python2.6/site-packages/numpy/core/include’],

out ’is_pex_runtime_module’: False,

out ’link’: [’gcc’, ’-shared’, ’-lm’, ’-lz’],

out ’n_preamble_lines’: 11,

out ’pex_file’: ’1100_whencompiling.px’,

out ’pimports’: [’pex.pexruntime’],

out ’pimports_abspath’: [’/res/home/dg/git/plat/pex/pexruntime.px’],

out ’print_backtrace_on_segfault’: True,

out ’print_warnings’: False,

out ’pxd_file_content’: ’include "numpy.pxi"\ninclude "px_ndarray.pxi"\n\ninclude "builtin.pxi"\ncimport pex.pexruntime\nfrom pex.pexruntime cimport pex_create_uninitialized\n’,

out ’pxd_file_indent’: 0,

out ’pyrex’: [’python /res/home/dg/git/plat/3rdparty/Cython_Bundle/cython/cython.py’,

out ’-I/res/home/dg/git/plat/pex’],

out ’used_ndarray_decoration’: False,

out ’whencompiling_directive_globals’: {’env’: <pex_base.struct instance at 0x9fe6d4c>,

out ’pprint’: <function pprint at 0xb7c58a04>,

out ’scope’: <px_to_pyx.Scope object at 0x9fead94>}}

out

out SCOPE

out [’depth’,

out ’parent’,

out ’ndarrays’,

out ’line_for_declarations’,

out ’line’,

out ’self_arg’,

out ’func_name’,

out ’variables’,

out ’non_cdef_class_types’,

out ’pragma_ndarray_bounds_checks’,

out ’pragma_ndarray_type_check’,

out ’pragma_gen_dictcoercion’,

out ’pragma_gen_strmeth’,

out ’pragma_gen_equalmeth’,

out ’pragma_gen_richcmpmeth’,

out ’pragma_gen_hashmeth’,

out ’pragma_gen_pickle’,

out ’pragma_gen_fastio’,

out ’pragma_gen_deepcopy’,

out ’pragma_gen_all_off’,

out ’pragma_c_only’]

out

These two objects contain the entirety of Pex’s internal state during compilation, though the
only attributes you’ll probably ever touch are: env.cc, env.link, and scope.pragma *.

For example, to add a -Wall flag for the C compiler, do:

51

14.1 Pragmas and the scope Object 14 CONFIGURING COMPILATION

1 %whencompiling: env.cc.insert(1,’-Wall’)

See the next section for how to use this C compilation configuration machinery to link with
external C code.

14.1 Pragmas and the scope Object

The scope object contains, among other things, the various pragmas (see D for full listing)
that you can use to control what happens during compilation. The scope object has slightly
different semantics than env, any changes you make to it have effect in your current scope
(e.g. current indentation level), and any child scope, but not outside. For example:

1 %whencompiling: scope.pragma_gen_strmeth = False

2

3 cdef c lass I:

4 pass
5

6 cdef c lass II:

7 pass

setting scope.pragma gen strmeth=False in the topmost scope, turns off generation of the
str method (see 9.2.2) for the entire module – neither class I or II will have it, whereas

the following:

1 cdef c lass I:

2 %whencompiling: scope.pragma_gen_strmeth = False

3 pass
4

5 cdef c lass II:

6 pass

turns it off for class I, but not class II.

14.2 pragma c only

Pex code can either generate fast C code, or slow code that calls the Python standard library,
and it can be hard to tell just by looking at it. For example:

1 cdef int i

2 for 0<i<20:

3 i+=3

is fast and maps directly to C code, whereas

52

14.2 pragma c only 14 CONFIGURING COMPILATION

1 for 0<i<20:

2 i+=3

is slow, and runs at Python speeds because i is a python object. To ameliorate the situtation
Pex allows you to set a pragma which will cause a compilation error if any code within the
scope of the pragma generates calls to the Python library:

1 %whencompiling: scope.pragma_c_only=True

2 for 0<i<20:

3 i+=3

out PexPragmaCOnlyError

out A line of pex code that has been indicated as generating only fast C code

out using "%whencompiling: scope.pragma_c_only=1" appears to have generated

out calls to the Python library.

out

out pex line:

out

out 1110_pragma_c_only_MUST_FAIL.px,2 | for 0<i<20:

out

out generated C:

out

out for (__pyx_3 = 0+1; __pyx_3 < 20; __pyx_3++) {

out __pyx_1 = PyInt_FromLong(__pyx_3); if (unlikely(!__pyx_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; goto __pyx_L1;}

out if (PyObject_SetAttr(__pyx_m, __pyx_n_i, __pyx_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; goto __pyx_L1;}

out Py_DECREF(__pyx_1); __pyx_1 = 0;

out

out

out

out suspect call:

out

out PyInt_FromLong

out

:-(pragma c only allows the following calls: Py INCREF, Py DECREX, Py xDECREF, and PyErr Occurred.
The refcount calls are in some sense unavoidable whenever dealing with Python objects, the
PyErr Occurred is called after any function call that may have generated a python exception.
You may take away your functions’ ability to throw exceptions and get rid of this check
whenever they are called (see 20), though being able to throw exceptions is good, and the
checks are cheap.

53

15 LINKING WITH EXTERNAL C CODE

15 Linking with External C Code

Here is an example showing how to use the functionality described in the previous section to
setup your compilation to link with external C code.

1 main.sh

2 #!/ b in / sh
3 set -x # echo s h e l l commands
4 (cd C_src && gcc -c C_module.c -o C_module.o) # compi l e our C module
5 $PEX prog.px # run the pex module
6

7 C_src/C_module.c

8 #inc l u d e < s t d l i b . h>
9 #inc l u d e ” i n c l u d e /C module . h”

10

11 vec *vec_create(unsigned object_size , unsigned length) {
12 return malloc (object s ize ∗ length) ;
13 }
14

15

16 C_src/include/C_module.h

17 typedef void vec;

18 vec *vec_create(unsigned object_size , unsigned length);

19

20

21 prog.px

22 %whencompiling:
23 env.cc.append(’-I./ C_src/include ’)

24 env.link.append(’C_src/C_module.o’)

25

26 cdef extern from "C_module.h":

27 ctypedef void vec

28 vec *vec_create(unsigned object_size , unsigned length)

29

30 cdef vec *v

31 v=vec_create (4 ,100)

32 print ’0x%x’%<int >v

33 print

out + cd C_src

out + gcc -c C_module.c -o C_module.o

out + /res/home/dg/git/plat/pex/pex -F prog.px

out

out 0x943e0d8

Refer to Pyrex documentation for more complete information about interfacing with C code:

54

 http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/version/Doc/LanguageOve rview.html

16 BACKTRACES ON SIGSEGV, SIGFPE, SIGBUS, AND SIGABRT

16 Backtraces on SIGSEGV, SIGFPE, SIGBUS, and SIGABRT

Pex attempts to make the vigorous experience of a C coredump a tad more civilized. You,
gentle reader, will of course never encounter such a bug in your own code, but in case you
ever have to run someone else’s, Pex registers a signal handler for SIGSEGV, SIGFPE, SIGBUS,
and SIGABRT that attempts to recover the C stack and print the backtrace:

1 cdef POOF ():

2 cdef int *null_pointer=NULL

3 print null_pointer [0]

4

5 def func (): POOF()

6

7 def main (): func()

out SIGSEGV has occured. DON’T PANIC!!!!!

out Put on your C hat, about to attempt a backtrace. The memory is corrupted,

out so anything may happen next, for example this backtrace attempt may hang...

out ---- BEG BACKTRACE -----------

out Containing Executable File Instruction Addr Closest Symbol

out

out /res/home/dg/git/plat/pex/doc/examples/1400_coredump_MUST_FAIL.so 0x6A17 __pyx_pf_231400_coredump_MUST_FAIL_func

out

out /opt/lib/libpython2.6.so.1.0 0x67DF7 PyCFunction_Call

out /opt/lib/libpython2.6.so.1.0 0x26F9C PyObject_Call

out /opt/lib/libpython2.6.so.1.0 0xBE9C4 PyEval_CallObjectWithKeywords

out /opt/lib/libpython2.6.so.1.0 0x2704C PyObject_CallObject

out

out /res/home/dg/git/plat/pex/doc/examples/1400_coredump_MUST_FAIL.so 0x6AB8 __pyx_pf_231400_coredump_MUST_FAIL_main

out

out /opt/lib/libpython2.6.so.1.0 0xC5E6D PyEval_EvalFrameEx

out /opt/lib/libpython2.6.so.1.0 0xC7114 PyEval_EvalCodeEx

out /opt/lib/libpython2.6.so.1.0 0xC7193 PyEval_EvalCode

out /opt/lib/libpython2.6.so.1.0 0xEAF3A PyRun_FileExFlags

out /opt/lib/libpython2.6.so.1.0 0xEB274 PyRun_SimpleFileExFlags

out /opt/lib/libpython2.6.so.1.0 0xEB56A PyRun_AnyFileExFlags

out /opt/lib/libpython2.6.so.1.0 0xF760D Py_Main

out

out python 0x592 main

out

out /lib/libc.so.6 0x15E9C __libc_start_main

out

out python 0x4A1 (null)

out [START]

out ---- END BACKTRACE -----------

out

out If you want to examine the source code for these functions, the corresponding

out executable file (either *.so or the program itself) must have been compiled

55

17 COMMAND LINE USAGE

out with ’-g’. If it wasn’t, you can do so now; you don’t have to rerun the program,

out if the source remained the same, the address for the function will be valid.

out

out For example, to get at

out

out ./mod.so 0x247A __pyx_pf_3mod_func

out

out with addr2line, from the shell do

out

out $ addr2line -e ./mod.so 0x247A

out

out with gdb,

out

out $ gdb ./mod.so

out (gbd) l *0x247A

out

out NOTE: The last stack frame may be a little off.

out

out Kaplah! Heghlu’meH QaQ jajvam.

out

out sh: line 1: 23677 Segmentation fault (core dumped) /res/home/dg/git/plat/pex/pex -F 1400_coredump_MUST_FAIL.px

Gotchas

:-(At the time this signal handler is called, memory is corrupted, and so anything may happen.
For example, as has been observed a few times, “attempting backtrace..” may get printed,
and then the program will hang. If you prefer the normal core dump behavior, turn this
functionality off by adding -nobt to the Pex command line.

:-(This functionality is on by default, you may turn it off by using -nobt flag on the command
line (see 17 about command line usage), but if you import any Pex modules not so compiled,
the signal handler will get registered again.

17 Command Line Usage

pex [options] [FILE{.px|.so}]

v1.2

-h(elp) print this message

-clean remove all generated files in the current directory (.pyx .pxd .c .o .so .pxi .dep .pyx.html .c.gcov .gcda .gcno .px.cov)

-build build all .px files in the current directory

-list list .px files and all their existing build products

-R recurse down directories, applies to -build, -clean, -list, and -covreport

56

18 COMPILING FOR CODE COVERAGE

-F force build

-v[#|all] trace level

-d(ebug) takes out ’-O6’ flag and adds ’-g’ to the gcc command line

-g adds ’-g’ to the gcc command line

-b compile with ndarray bounds checks

-c compile for code coverage (also can set PEXCOVCOMPILE environment variable)

-covreport generate .px.cov files after a compiled for code coverage run

-u(nsafe) remove ’-fno-strict-aliasing’ from gcc command line potentially

speeds things up, but also, potentially gives incorrect behavior

-nobt turn off backtrace printing on SIGSEGV, SIGFPE, SIGBUS, and SIGABRT

-W print warnings

-a annotate, produce FILE.pyx.html showing how each line is converted into C

To see what Pex is doing, in exhausting detail, run it with full verbosity:

$ pex -vall main.px

If Pex is not run directly, but is involved in a pex.pimport() call from python, you can still
turn on verbosity by setting an environment variable:

1 #!/ usr / b in / python
2

3 import pex

4 mod = pex.pimport(’mod’)

$ export PEXVERBALL=1

$ python main.py

<lots of output follows>

18 Compiling for Code Coverage

You may also compile such that after running you get code coverage information - the number
of times each line of source code was executed. For example, suppose you have the following
pex file main.px:

1 def main ():

2 for i in range (5):

3 x=i

You compile it with the ’-c’ flag to turn on code coverage:

$ pex -c main.px

* pex.build main.px +code_coverage

* pex.build done

57

19 DISTRIBUTING CODE

The command above also runs the file, which produces various statistic files. Once the run is
done, run the following command to get the report:

$ pex -covreport main.px

* coverage : 100% (3/ 3) <CWD>/main.px.cov

The display shows that 3 out 3 source lines in main.px were executed. If you look in
main.px.cov, you will see the counts for each line:

$ cat main.px.cov

1: 1:def main():

6: 2: for i in range(5):

5: 3: x=i

If the count is #####, the line was never executed. If the count is -, the line is not executable
(for example, a comment). You may also turn on compiling for code coverage using the
environment variable PEXCOVCOMPILE:

$ pex -clean main.px

$ PEXCOVCOMPILE=1 python -c "import pex; pex.pimport(’main’)"

* pex.build main.px +code_coverage

* pex.build done

The -covreport flag has the same semantics as -build and -clean, with no arguments it runs
on every pex file in the current directory, with -R, it will recurse.

19 Distributing Code

Recall that from a single main.px, Pex compiles main.c, main.o, main.dep, main.pyx, main.pxd,
and main.so. All you need to distribute to run your code are the .so files, you can say the
following to run main:

$ pex main.so

If you have many modules, you still only need to distribute their .so files, but you must
maintain the same directory structure, you couldnt put all the .so files in the same directory,
and you must continue to have init .py files in your package directories.

If you wish to have new pex modules compiled against the ones you are distributing, that
is new pex modules pimporting the ones you are distributing, .so files are not sufficient, you
must also distribute the .pxd files.

For example, you start out with the following files:

58

20 EXCEPTIONS

main.px pkg/__init__.py pkg/mod.px

when you compile with pex, you get:

main.c main.px main.so pkg/mod.c pkg/mod.px

main.dep main.pxd pkg/__init__.py pkg/mod.dep pkg/mod.pxd

main.o main.pyx pkg/mod.o pkg/mod.pyx pkg/mod.so

If you distribute:

main.so pkg/__init__.py pkg/mod.so

you may run main.so using Pex, and you may import main from python modules. If you
distribute:

main.pxd main.so pkg/__init__.py pkg/mod.pxd pkg/mod.so

you can then also pimport main from other pex modules.

20 Exceptions

Pyrex handles exceptions by checking a global error variable after every call to a def or a
cdef function. In case this is a performance problem, or a function can not possibly throw
an exception, Pex allows you to turn this check off by adding except exits to the function
prototype:

1 cdef void func() except exits:

2 assert 0

3

4 try: func()

5 except: print "caught exception"

out PEX: Unpropagated exception has occurred (because its inside a cdef func that

out opted to die on an exception, using ’except exits:’)

out File"main.pxd", line 4, in main.func

out AssertionError

The except exits clause to func does two things, first there is no error variable check after
calls to func. Second, any exceptions that occur inside func, or any functions it calls, cause
the program to exit with an error message, as can be seen in the above example. Note that

59

20.1 Using Exceptions in Fast, Low Level Code 20 EXCEPTIONS

this is different from Pyrex, where an unpropagated exception prints an error message, but
the program continues to run.

The except exits clause also makes sense for functions that can not possibly throw
a python exception, like those in external C libraries (see E for examples of this use in
builtin.pxi). See Pyrex documentation about error return values for a more complete dis-
cussion of the except clause in function prototypes.

20.1 Using Exceptions in Fast, Low Level Code

One can use exceptions, with all of their niceties, even in low level C code, without any
performance penalties. Generating and throwing exceptions is expensive, but since it only
needs to happen on an error condition, which can be checked for with an efficient if statement,
this does not slow down the common case:

1 cdef void low_level_io ():

2 cdef FILE* f

3

4 f = c_fdopen(-1, "r")

5 i f f == NULL:

6 PyErr_SetFromErrno(PyExc_IOError); return
7

8 def main ():

9 low_level_io ()

out Traceback (most recent call last):

out File "/res/home/dg/git/plat/pex/pex", line 334, in <module>

out 332 |

out 333 | tr(1,"calling %s.main()"%name)

out >> 334 | exit_code=module.main()

out File "1602_exc_for_low_level_code_MUST_FAIL.px", line 9, in 1602_exc_for_low_level_code_MUST_FAIL.main

out 7 |

out 8 | def main():

out >> 9 | low_level_io()

out File "1602_exc_for_low_level_code_MUST_FAIL.px", line 6, in 1602_exc_for_low_level_code_MUST_FAIL.low_level_io

out 4 | f = c_fdopen(-1, "r")

out 5 | if f == NULL:

out >> 6 | PyErr_SetFromErrno(PyExc_IOError); return

out <type ’exceptions.IOError’>: [Errno 9] Bad file descriptor

Gotchas

:-(If the return type of a function is a python object, except exits has no effect. In the following
example, the return type is omitted and thus defaults to a python object. As a result, the
exception is plumbed through:

60

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/version/Doc/Manual/basics.html#ExceptionValues

20.2 Exception Traceback Formatting 20 EXCEPTIONS

1 cdef func() except exits:

2 assert 0

3

4 try: func()

5 except: print "caught exception"

out

out caught exception

20.2 Exception Traceback Formatting

Suppose you have the following two files:

mod.px

def func():

assert 0

main.px

%pimport mod

def main():

mod.func()

Running main.px with python’s standard traceback formatting gives you the following output:

% pex main.px

Traceback (most recent call last):

File "main.pyx", line 92, in main.main

mod.func() ## main.px,6

File "mod.pyx", line 88, in mod.func

assert 0 ## mod.px,2

AssertionError

The line numbers refer to .pyx files, and the traceback can be significantly harder to read in
more complicated situations than the one given here. For this reason pex registers a custom
sys.excepthook that gives a nicer output:

Traceback (most recent call last):

File "main.px", line 4, in main.main

mod.func()

File "mod.px", line 2, in mod.func

assert 0

AssertionError

61

21 EFFICIENCY

If you want to access this nicer formatting when custom printintg tracebacks, and .px files are
involved, you may use the two functions pex.print exc([file=sys.stderr]) and pex.format exc().
They are analogous to python’s traceback.print exc() and traceback.format exc(), except
they do not support the limit argument.

21 Efficiency

cdef bool x = True is slow, use cdef bool x = cTrue. Also note that x is True is slow, as x SLOW
gets upcast to python.

Be careful with loops, for 0<=i<n is slow if i is not a cdef’d int. SLOW

If you have an expression that is all cdef’d variables, it will run at C speed; however if SLOW
you happen to have a single variable in the expression that is a python object, things will
automatically and silently be upcast to Python and will become slow. It is easy for this to
happen, and hard to detect, since by just looking at the expression you can not tell what its
constituent variables are – cdef variables or python objects. See B.2.2 for more information
on this topic. Your best bet, if things are not running as fast as you expected, is to look at
the generated C code, and see what is actually happening.

Use except exits when declaring prototypes for external C functions, see 20 for full discussion. SLOW

Be careful with object attribute access, x.a will run two orders of magnitude slower, if x is a SLOW
python object, rather than a cdef class. See B.2.3 for more information.

Make sure to give a cdef function a return type. If you don’t specify one, it defaults to a SLOW
python object, and will return the Python None, even if you don’t have any returns.

21.1 Annotate Mode

Most of the inefficiencies creep in when you use code that triggers the use of the python
runtime. This can be hard to detect just by looking at the code, for example you may be
using a variable that you forgot to cdef as an int, and which therefore is a python object. Pex
can generate an html file for your .px file that shows how your code is expanded into C code:

$ pex -a module.px

$ firefox module.pyx.html

62

22 GOTCHAS

The html file shows your code lines, each colored in a different shade of yellow, the more
yellow, the more C lines your pex code line was expanded into, the slower it probably runs.
You may double click on any line to see it’s actual expansion into C code.

:-(Due to a buglet in this feature, you may not use an empty except clause if you wish to generate
the html file. Instead of this,

except:

do this,

except Exception:

22 Gotchas

DEATH!
:-(Accessing uninitialized cdef variables: the following mistake virtually guarantees memory

corruption, and is so easy to make, that even after reading this scary warning, you will make
it multiple times, but at least this author’s consciousness will be clear. The following snippet
causes a coredump:

1 cdef c lass item:

2 cdef int a

3

4 cdef item x

5

6 x.a

What happened, is that x was accessed before it was instantiated, we should have done an
x=item() first. Since we did not, the value of x was None, which we then proceeded to access
as if it had type item. None was cast to type item, and then the memory address of where
attribute a would have been was accessed. This got us a random memory location; had we
written to the attribute, we would have corrupted the None object, and had we called a cdef’d
method of item, we would have called a random memory location. BE SURE TO INSTANTIATE
ALL YOUR CDEF OBJECTS, INCLUDING NDARRAYS, BEFORE ACCESSING THEM.

:-(The semantics of the Python path are not supported.

:-(The pex directory must be installed in your Python path in order for the compiled Pex modules
to be importable and usable.

63

22 GOTCHAS

:-(Pex does not handle Mac ‘\r’ terminated files.

:-(The mod operator % gives different results for negative numbers depending on whether the
variable you apply it to is a C variable or a Python variable. Therefore if your negative number
is in a C int you’ll get one answer, if it is in a Python int you’ll get another:

1 cdef int x = -10

2 y = -10

3

4 print ’ -10 % 3 ==’, x % 3, ’for C int’

5 print ’ -10 % 3 ==’, y % 3, ’for Python int’

out

out -10 % 3 == -1 for C int

out -10 % 3 == 2 for Python int

This can be especially confusing, because at times it’s hard to keep track of whether the result
of an expression is a C value, or a Python value (see B.2.2 for a description of how and when
Pyrex converts between C and Python variables).

:-(In some situations, Pyrex does not complain if you define the same variable with two different
types, the following does not cause a compile or runtime error:

1 cdef char x

2 cdef int x

In the above, the last declaration wins.

:-(Pyrex does not directly warn if the name of a class attribute clashes with a member function,
but instead gives you mysterious errors:

1 cdef c lass item:

2 cdef int value

3 def value(self): pass
4 x = item()

5 x.value()

out PyrexError

out <snip>

out main.pyx: Cannot take address of Python variable

:-(Static variables are not supported, use global variables instead. Global variables have the
same semantics as C globals.

64

22 GOTCHAS

:-(Do this:

1 cdef c lass item:

2 pass

not this:

1 cdef c lass item: pass

or you’ll get a mysterious PexUnexpectedInternalError.

:-(If you turn off generation of all special class functions (see 9), and have nothing in the class
except variable declarations, the variable declarations will get sent to the header file, the class
body will become empty, and you’ll get a confusing syntax error. Do this:

1 %whencompiling: scope.pragma_gen_all_off = True

2 cdef c lass item:

3 cdef int x

4 pass

instead of this:

1 %whencompiling: scope.pragma_gen_all_off = True

2 cdef c lass item:

3 cdef int x

:-(To assign a character literal, you must use the following hack:

1 cdef char c = ’a’[0]

Though contorted, the code still runs at C speed.

:-(Be careful with multi-line statements, they can be fragile due to Pex’s lack of parsing. For
example, the following causes a syntax error:

1 def func(a, # in f o rma t i v e comment
2 b):

because behind the scenes the line gets converted into def func(a,# informative comment b):.

:-(Be careful with ‘:’ and ‘;’, don’t try to combine too many things into one line, for example
the following is a syntax error:

1 except: do_something (); raise

65

22 GOTCHAS

:-(Be careful with ‘:’, ‘{’, and ‘}’. Their liberal use, while legal Python and Pyrex syntax, may
easily screw up Pex’s regular expression based processing, for example the following wouldn’t
be recognized as a function prototype:

1 cdef func(a={ ’key ’ : ’ val ’}):

:-(If you compile your Pex modules optimized, you want to also pass the -fno-strict-aliasing

to the compiler – this is the default. It slows things down slightly, but without it, with
a non-trivial probability, Pyrex’s object system breaks (see 14 about how to configure the
compilation).

:-(If you get a “〈some type〉 is not the right type of object” error, clean and rebuild everything,
this may mean that for some reason Pex’s rebuild mechanism has failed.

:-(Triple quoted strings, such as ”””, are supported, but are munged. They are meant to be used
as block comments, if you print them out, they’ll be different from what you wrote (new lines
and indentantion striped out, and {} replaced with ()).

:-(This is a big one, if you have a module with a cdef class, and this module also has a function
that takes this cdef class as a typed argument, you can not import this module through a
package – you can do import mod, but not import pkg.mod. The following breaks:

1 pkg/__init__.py

2

3 pkg/mod.px

4 cdef c lass item:

5 pass
6

7 cdef func(item x):

8 pass
9

10 main.px

11 %pimport pkg.mod

out Traceback (most recent call last):

out <snip>

out TypeError: C function pkg.mod.func has wrong signature <snip>

As a work around, you may pass in a generic Python object, and then unpack it into the
proper type:

1 pkg/__init__.py

66

22 GOTCHAS

2

3 pkg/mod.px

4 cdef c lass item:

5 pass
6

7 cdef func(obj):

8 cdef item x = obj

9

10 main.px

11 %pimport pkg.mod

:-(In the following declaration:

1 cdef c lass item:

2 cdef int i

the attribute i is NOT static, it is a regular class attribute. It is easy to confuse it for a static,
because in Python, static variables are declared as follows:

1 c lass item:

2 i=3

:-(If you have a cdef attribute in a derived class, with the same name as a cdef attribute in the
base class, the base class attribute is not replaced, both still exist:

1 cdef c lass base:

2 def __init__(me):

3 cdef int me.x=3

4

5 def func(me):

6 print ’base.x’,me.x

7

8 def set_base(me, int x):

9 me.x=x

10

11 cdef c lass derived(base):

12 cdef int x

13

14 def func(me):

15 base.func(me)

16 print ’derived.x’,me.x

17

18 cdef derived d = derived ()

19

20 d.func()

21 d.x = 7

67

22 GOTCHAS

22 print
23 d.func()

out

out base.x 3

out derived.x 0

out

out base.x 3

out derived.x 7

:-(Here is a confusing error,

1 cdef c lass item:

2 cdef meth(me, int *ip): pass
3

4 cdef int *ip

5

6 x = item()

7 x.meth(ip)

out PyrexError

out python cython.py "main.pyx"

out

out Error converting Pyrex file to C:

out --

out <snip>

out cdef int *ip ## main.px,4

out x = item() ## main.px,6

out x.meth(ip) ## main.px,7

out ^

out --

out main.pyx:170:9: Cannot convert ’int *’ to Python object

What happened here, is that x is untyped (see B.2.4 for full discussion of typed vs. untyped
objects). As such, it is a regular python object, and does not expose the cdef meth() method.
Thus Pyrex attempts to call it’s def meth() method. The def meth() does not exist, and a
call to it will cause an attribute error, but in order for this to happen, the call has to be
attempted, and in order to be attempted, the arguments for the call have to be marshalled
into Python objects, thus Pyrex attempts to convert the int *ip into a Python object, which
causes the error we are seeing. To fix, declare x typed: cdef item x.

:-(Suppose you iterate over a generator: for i in generator func(): (see Python documenta-
tion about what a generator is, here it is a function that uses yield). There appears to be a

68

25 CONCLUSION

bug in Pyrex where exceptions thrown from inside a generator are ignored, so in this case if
generator func() throws something, you’ll never see it.

:-(You have to be careful about explicitly casting a python object to a C number. You may think
you are getting the value of the object, if for example it is a python integer, but you’ll really
only be getting it’s memory address.

1 x = 17

2 cdef int xint = <int > x

3 print x, xint

out

out 17 164584608

23 Crossplatform Status

Pex is primarily targeted for Unix, though everything works on MacOS, except for backtraces
on SEGFAULT. Pex is probably not too far from working on Windows with gcc, but does not
at the moment.

24 Acknowledgements

We’d like to thank Greg Ewing for creating Pyrex, and making Pex possible. Through our
usage of Pyrex, we’ve grown continually more impressed and are now left with a firm conviction
that it is a technical tour de force. We’d like to thank the folks at the Cython project for
augmenting Pyrex with many convenient and useful features. Finally, we’d like to thank our
colleagues at PNYLAB for gallantly blowing themselves up on a wide variety of exciting mines
as Pex was being developed, and who continue to deal stoically with some of Pex’s more rude
quirks.

25 Conclusion

This version of Pex is our first attempt at creating a language that achieves performance of C,
but retains most of the elegance and clarity of Python. As a first attempt it is rough around
the edges, but we believe it is immediately useful, and are shifting our entire codebase into
Pex. Pex gives the ability to write C fast numerical loops without any special contortions,
and C fast large scale projects through the virtue of having objects with C fast attribute and
method access. Through Pex’s mirroring of the Python import mechanism, large projects do

69

25 CONCLUSION

not need to have any build infrastructure, and much of the boiler plate code generally required
for large projects (e.g. to quickly serialize objects to disk or over sockets), is automatically
generated. This, largely performance oriented functionality, lives alongside the ability to mix
in Python code and classes, and thus get the full niceties of the Python language. In fact,
things mix together so seamlessly, that it can be a problem at times to figure out whether you
are writing C fast code or not.

It is our belief, reinforced throughout our time working on Pex, that this is something
missing in the world, and not for any good technical reasons. It is eminently possible to have
a language that gets down to the iron, runs at C speeds, and has no surprises in generated
assembly, but at the same time guides you along to a clear, succinct and correct expression
of complicated systems and algorithms. We think Pex is a good first step towards addressing
this lack.

70

A WRAPPING CDEF FUNCTIONS

APPENDIX

A Wrapping cdef functions

The current version of Pex does not allow for naked cdef functions to be directly visible in the
Python environment. This limitation is a historical accident: Pex was initially layered over
an early version of Pyrex that did not have this feature. Indeed, exporting naked functions
from one Pex module to another is only partially supported.

For all our examples, we consider how to wrap the Pex/C routine sqrt.

1 cdef extern from "math.h":

2 double sqrt(double x)

A.1 Wrapping cdef functions: the slow and simple way

The standard method to make cdef functions visible to the Python environment is by defining
a Python interface to the function within the Pex file. For example, one may write:

1 def py_sqrt(x):

2 return sqrt(x)

One can then import py sqrt into the Python world; calls to py sqrt are thus forwarded
to sqrt. The reason this works is that when a Pex file is compiled, its Python functions
have access to all of the cdef functions within this file. Then, when the compiled module is
imported into a Python environment, the Python functions (and methods) are made visible
to the Python environment.

This indirection has a price: one has to go through a thin layer of Python code to access
the cdef function. This “thin” layer may very well take longer than the actual invocation of
the cdef function itself. However, this cost is often immaterial: if one is wallowing in Python,
the cost of a single extra Python call is comparatively small.

However, there are circumstances in which one may sensibly wish to avoid any Python
overhead. For example, given a function f , one may wish to compute f(x) for each value x in
some ndarray v, and store the result in another ndarray, out. Such a basic mapping operation
is a clear candidate for implementing in Pex. One would like to make a mapper, pass it a
function, and have it construct an object that maps vectors to vectors, without going through
any Python layers (aside from the initial call).

71

A.2 Wrapping cdef functions via classes A WRAPPING CDEF FUNCTIONS

A.2 Wrapping cdef functions via classes

To avoid the Python layer, we can wrap cdef functions as instances of class objects. Thus, we
can wrap sqrt as follows:

1 cdef c lass sqrt_class:

2 def __init__(me): pass
3 cdef double apply(me,double x): return sqrt(x)

4 def __call__(me,x): return me.apply(x)

5

6 py_sqrt=sqrt_class ()

We can then import py sqrt and use it as we would any Python function (note that f(x)

is syntactic sugar for f. call (x)).

The problem with this simple approach is that we cannot easily pass py sqrt to some other
general Pex routine, since each wrapped function has a distinct type. However, this problem
is remedied using subclassing.

A.3 Obtaining generality via subclassing

Since Pex has a rigid type system, we have to be a little bit cleverer in order to obtain general
routines. We mentioned that it would be nice to wrap a routine so that it would operate
on vectors at a time (a map operation). Due to typing issues, we cannot hope to make a
truly general mapping object. But we can be reasonably general. Suppose we want to take a
function f that maps a double to a double, and create a new (mapping) function fv that maps
an ndarray of doubles to an ndarray of doubles. We first define a dummy class, function dd,
that captures the idea of mapping a double to a double:

1 cdef c lass function_dd:

2 def __init__(me): pass
3

4 cdef double apply(me,double x): return 0.0 #dummy rou t i n e
5

6 def __call__(me,x): return me.apply(x)

Then, we can wrap the sqrt function with its own class, but specify that this is a subclass
of function dd:

1 cdef c lass sqrt_class(function_dd):

2 cdef double apply(me,double x): return sqrt(x)

3

4 py_sqrt=sqrt_class ()

72

A.4 Do we need all of these classes? A WRAPPING CDEF FUNCTIONS

We can use py sqrt as before, and it will compute the specific function we want. However,
since it is a subclass of function dd, other routines can treat it as a generic function from
doubles to doubles. Thus, we can write:

1 cdef c lass mapper:

2 def __init__(me,function_dd f):

3 cdef function_dd me.f

4 me.f=f

5 return
6

7 cdef void vapply(me,

8 ndarray<double 1d> v,

9 ndarray<double 1d> out):

10 cdef int i,n

11 cdef function_dd f

12 f=me.f

13

14 n=v.dimensions [0]

15

16 for i from 0<=i<n:

17 out{ i}=f.apply(v{ i})
18

19 return
20

21

22 def __call__(me,v,out=None):

23 i f out i s None: out=numpy.zeros_like(v) #note : must import numpy
24 me.vapply(v,out)

25 return out

After importing py sqrt and mapper, we can set vsqrt=mapper(py sqrt), giving a routine
that computes the square root of each element of an ndarray (of doubles).

It should be noted that we still have an intermediate layer - the wrapped function must
call its apply method which then calls the actual function. However, this layer is much, much
faster than going through python.

A.4 Do we need all of these classes?

It seems wasteful to make an entire class object for each function we would like to wrap. We
can be more economical by making a single type, and performing invocations of this type
within the pex file.

1 #de f i n e a raw f un c t i on (not an o b j e c t !) from doub le−to−doub l e
2 ctypedef double (* raw_dd)(double)

3

73

A.4 Do we need all of these classes? A WRAPPING CDEF FUNCTIONS

4 cdef c lass wrapper(function_dd):

5 def __init__(me):

6 cdef raw_dd me.f

7 return
8

9 cdef set(me ,raw_dd f):

10 me.f=f

11 return
12

13 cdef double apply(me,double x):

14 return me.f(x)

15

16 cdef wrapper px_sqrt

17 px_sqrt=wrapper () #cr e a t e s a wrapper o b j e c t
18 px_sqrt.set(sqrt) #s e t s i t t o t he s p e c i f i c f un c t i on
19 py_sqrt=px_sqrt #py s q r t i s a python o b j e c t

Most of this example is straightforward. We create a specific instance of the wrapper
object, and set it to a specific function. But why are we using two variables, px sqrt and
py sqrt? We need to explicitly declare a variable to be of type wrapper so we can access
the set method. Then we need to make it visible to the python world, so we have a second
variable, py sqrt that is a python object (this is the default type when a variable has not been
explicitly typed).

Now, we should be able to have a single expression that generates the wrapper object as a
subexpression, then assigns it without ever being assigned through an extra variable. However,
in our attempts, strange things happened: The compiler perversely tried to convert an object
of type raw dd to a python object, which it cannot do. Using explicitly typed intermediate
variables seems to guide the compiler past this pathology.

With such ready access to the raw functions, we can rewrite the mapper object to be much
more efficient, achieving something much closer to full speed.

1 cdef c lass mapper2:

2 def __init__(me,wrapper function):

3 cdef raw_dd me.f

4 me.f=function.f

5 return
6

7 cdef void vapply(me,

8 ndarray<double 1d> v,

9 ndarray<double 1d> out):

10 cdef int i,n

11 cdef raw_dd f

12 f=me.f

13

14 n=v.dimensions [0]

74

A.5 Wrapping Python objects as Pex objects A WRAPPING CDEF FUNCTIONS

15

16 for i from 0<=i<n:

17 out{ i}=f(v{ i})
18

19 return
20

21 def __call__(me,v,out=None):

22 i f out i s None: out=numpy.zeros_like(v)

23 me.vapply(v,out)

24 return out

:-(While this method is certainly more efficient, the resulting objects will not be pickleable.
Indeed, to compile this code, we needed to set the following pragmas at the beginning of the
file:

1 %whencompiling: scope.pragma_gen_fastio=False

2 %whencompiling: scope.pragma_gen_dictcoercion=False

3 %whencompiling: scope.pragma_gen_pickle=False

Thus, any object that is built up of such objects will be unpicklable. Use this method
at your peril!

A.5 Wrapping Python objects as Pex objects

The mapper function we have created is very particular in the type of the function it accepts.
But suppose we have a Python object that maps doubles to doubles. Why can’t we use the
mapper object on it? Let us ignore the obscenity of performing ones trivial bookkeeping at
C speed while computing the actual function at Python speed. We might argue that we
shouldn’t have to to the trouble of reimplementing mapper in Python, or that we are quickly
prototyping in Python a function that we later intend to implement in Pex.

The problem is that the mapper object wants an object of a particular type (function dd),
and even if the Python object behaves like a function dd object should, it just doesn’t
smell right. However, we can make a simple wrapper that converts an arbitrary object to
a function dd object:

1 cdef c lass python_wrapper(function_dd):

2 def __init__(me,obj):

3 cdef object me.obj

4 me.obj=obj

5 return
6

7 cdef double apply(me,double x):

8 return me.obj(x)

75

B WHAT IS PYREX?

Note that whenever me.obj(x) is evaluated, a run-time type check of the answer is per-
formed to make sure that it is a double.

B What is Pyrex?

This section is not intended to be a standalone description of Pyrex, for that please refer to
the official Pyrex documentation. Also keep in mind, that as described in the abstract, Pex
sits on top of Cython, a fork of the Pyrex project.

B.1 Simple

Pyrex, at it’s simplest, does three things: it compiles your Python code to C, it allows you to
mix C code with your Python code, and finally allows you to write classes – “cdef classes” –
whose methods and attributes are accessed at C speeds, 1-2 orders of magnitude faster than
methods and attributes of Python classes.

B.2 Elaborate

B.2.1 Python to C Compiler

Pyrex compiles your Python code to a sequence of C calls to the Python standard library, for
example, Python code:

1 v=[]

2 v.append (3)

becomes something like the C code:

1 PyObject *v;

2 v = PyList_New (0);

3 PyList_Append(v, PyInt_FromLong (3));

Pyrex essentially reproduces the actions the Python interpreter would take at runtime,
and writes them to a C file. This removes the overhead of the Python interpreter, however
that by itself is usually not significant. However, Pyrex does other optimizations (many of
them come from the Cython project), like making [] accesses go faster for list and tuples than
for generic Python objects. All told, PyBench – the standard Python benchmark – runs 30%
faster when compiled with Pyrex, than when run with Python. It is very probable that you
can compile your Python code with Pyrex, with no changes, and have it run faster. Note,
most Python code is valid Pyrex code, but not all (one example: import * is not supported).

76

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

B.2 Elaborate B WHAT IS PYREX?

You will likely have to make some small changes, see Pyrex Limitations, and also differences
between Pyrex and Cython, because Cython removes some of these limitations.

B.2.2 Mixing in C Code

If you write the following:

1 x=3

2 y=4

3 x+y

both x and y are Python objects, thus x+y is an addition of two Python objects, and happens
at Python speed, much slower than C speed. Pyrex allows you to declare and use C variables,
much like you would in C, except you have to precede the declaration with “cdef”:

1 cdef int x,y

2 x=3

3 y=4

4 x+y

Here, x and y are C ints, and the addition is an addition of C ints, passed by Pyrex through
to the C compiler and running at C speed (essentially happening in one instruction), easily 2
orders of magnitude faster than the pure Python version given above.

In a situation when you have an expression where Python objects and C variables are
mixed, Pyrex will first convert the C variables to Python objects, for example, here:

1 cdef int x=3

2 y=4

3 x+y

x is converted to a Python object, and x+y becomes a sum of two Python objects (notice that
this expression now runs at Python speed). Pyrex is able to do this automatic conversion for
most of the standard C types (see Pyrex documentation), including all of the ones supported
by Pex (see 12).

Similarly, for functions, if you write the following:

1 def func(x):

2 return x+1

3 func (3)

the call to func() incurs a lot of overhead because it goes through all of the Python function
invocation machinery, the C call stack for such an invocation is something like:

77

 http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/version/Doc/Manual/Limi tations.html
http://cython.org/talks/SageX.pdf
http://cython.org/talks/SageX.pdf
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

B.2 Elaborate B WHAT IS PYREX?

PyCFunction_Call

PyObject_Call

PyEval_CallObjectWithKeywords

PyObject_CallObject

Like for variables, Pyrex allows you to prefix functions with “cdef” and write:

1 cdef func(x):

2 return x+1

3 func (3)

This func() is a regular C function call, with no Python linkage overhead. Note: if you
don’t specify a return type, or an argument’s type, a Python object is assumed; the above is
equivalent to:

1 cdef object func(object x):

2 return x

We can also specify the usual C types, e.g.:

1 cdef uint64 func(int x):

2 return x+1

Here is an amazing thing about these cdef functions, you can take the following:

1 cdef void func(FILE *ioptr):

2 cdef int x

3 fread(&x, sizeof(int), 1, ioptr)

change it to:

1 cdef void func(FILE *ioptr):

2 cdef int x

3 i f not fread(&x, sizeof(int), 1, ioptr): raise IOError

and have that Python IOError exception correctly plumb through the entire call stack, for
essentially no overhead (a boolean check for every function invocation). If you’ve been around
C, you are sure to understand this author’s enthusiasm for this functionality.

Pyrex also supports cdef’ing structs, enums, externs, etc. You may use these in Pex, but
not as cdef class attributes.

B.2.3 Differences between class and cdef class

Suppose you define a Python class:

78

B.2 Elaborate B WHAT IS PYREX?

1 c lass cl:

2 def __init__(me): me.x=3

3 def func(me): return 7

and do:

1 obj = cl()

2 obj.x

3 obj.func()

Here is what happened behind the scenes for obj.x and obj.func(), every Python class has a
hash containing its methods and attributes, indexed by name. To execute obj.x, Python did
a hash lookup for the string “x”, and similarly for obj.func(), a hash lookup for the string
“func”. Thus, for any method or attribute access of a Python class, you incur the overhead
of a hash lookup. Python also has another, faster, method for attribute access, to use which
you specify a list of the attributes an a special slots attribute, however it is still far from
C speed.

Pyrex allows you to avoid this overhead by using a “cdef” class (refered to in the Pyrex
manual as “extension type”), here is the above example re-written to use it:

1 cdef c lass cl:

2 def __init__(me): cdef int me.x=3

3 cdef func(me): return 7

4 cdef cl obj=cl()

5 obj.x

6 obj.func()

Though things look similar, the obj.x and obj.func() are now accessed at the same speed as
a C struct attribute, 1-2 orders of magnitude faster than the pure Python.

Though these “cdef” classes are in many respects similar to Python classes, they differ in
several important ways. Here is a table summarizing some of these differences:

79

B.2 Elaborate B WHAT IS PYREX?

class cdef class

y y can have def methods
n y can have cdef methods
n y can have cdef attributes
y n can add new attributes on the fly

y y def methods visible to Python
na n cdef methods visible to Python
y n attributes visible to Python

y y can use cdef variables inside methods

na y cdef attributes visible to other cdef classes and Pyrex code F

na y cdef methods visible to other cdef classes and Pyrex code F

F - These are the two primary reasons for having cdef classes.

Essentially, a cdef class is a more static creature than a plain Python class, its attributes
are set once and for all at compile time – you wouldn’t be too far wrong if you thought of it
as a C struct.

Pyrex implements inheritance for these cdef classes, allowing you to derive subclasses, and
also, amazingly, implements type polymorphism without sacrificing much in performance (it
uses the same “vtable” approach that is used by C++). Type polymorphism is something you
immediately discover you need once you start a medium to large size project that uses OOP.
For example, suppose you want all your objects to have a fast report() method, which is used
when you pass them to a generic report maker function. If you are coming from the Python
side, this does not seem very hard; you can lookup the object’s report() method dynamically,
at runtime. With a compiled language, like Pyrex, all such lookups must be resolved in a
more static fashion – this is where a lot of the speed up comes from.

The usual solution, providing you have type polymorphism, is to derive your classes from
a common base class that implements a stub method for report(), and then in the derived
class, override this method with something useful. Here is how you would do this in Pyrex:

1 import time

2

3 cdef c lass baseclass:

4 cdef void report(me): raise NotImplementedError

5

6 cdef c lass derived(baseclass):

7 cdef void report(me): print "report () of the derived class"

8

80

B.2 Elaborate B WHAT IS PYREX?

9 cdef do_report(baseclass b):

10 print "report at time",time.time()

11 b.report () # ∗∗∗
12

13 d = derived ()

14 do_report(d)

out

out report at time 1299875377.06

out report() of the derived class

The reason d’etre for all this type polymorphism machinery, is that the obj.report() call in
the do report() function runs at C speed, no matter the type of the passed in object (though
note that that type has to derive from baseclass).

B.2.4 Difference between typed and untyped objects

When cdef class objects are created typed, like so:

1 cdef c lass item:

2 pass
3

4 cdef item x = item()

you have access to x’s cdef methods, cdef attributes, and def methods. When created untyped:

1 x = item()

you lose access to all the cdef internals, and x appears as an almost regular python object,
with the exception that you can not add new attributes. Here is a table summarizing the
differences:

created with created with
cdef item x = item() x = item()

access cdef attributes y n
access cdef methods y n
access def methods y y
add new attributes n n

81

C DIFFERENCES BETWEEN PEX AND PYREX

B.2.5 Overriding {def,cdef,cpdef} methods with {def,cdef,cpdef} methods

Pyrex allows you to override a def method with a cdef method with no complaints, however
the results when you run may be surprising. The advice is to never do such things, but just
in case here is a table enumerating the possibilites:

cdef class A: cdef class B(A): what is printed?

? f(): ? f(): x=B() cdef A x=B()

print ’A’ print ’B’ x.f() x.f()

-------------- --------------- -------- --------

def def B B

def cdef A A

def cpdef B B

cdef def B A

cdef cdef err B

cdef cpdef <compilation error>

cpdef def B A

cpdef cdef <compilation error>

cpdef cpdef B B

C Differences Between Pex and Pyrex

C.1 Defining cdef Class Attributes

In Pex, you may define class attributes in the class preamble like so:

1 cdef c lass item:

2 cdef int i

3 cdef double x

This is similar to Pyrex, though in Pyrex you would put these declarations in a separate, .pxd,
header file.

Pex also allows you to declare attributes directly in the constructor:

1 cdef c lass item:

2 def __init__(self):

3 cdef int self.i

4 cdef double self.x

When you do so, you may also initialize the class attributes on the declaration line:

1 cdef c lass item:

82

C.2 Unsupported Features D PRAGMAS

2 def __init__(self):

3 cdef int self.i = 3

:-(Note that decorated ndarray attributes may only be declared in the init function, not in
the class preamble.

C.2 Unsupported Features

(i.) cdef blocks are not supported

(ii.) cpdef functions are not supported

(iii.) C structs, pointers, function pointers, and C arrays are all supported in Pyrex, and in
general are plumbed through to Pyrex by Pex, however none of these will play well as
class attributes in Pex, at best making your classes immodest (see 9). In general all of
these are considered out of bounds as far as Pex is concerned.

This not a complete list, these are just features the authors of Pex knew about, and didn’t
support. There are likely other unsupported features.

D Pragmas

You set the pragmas by putting the following in your code:

1 %whencompiling: scope.<some_pragma > = [True | False]

See 14 for a complete discussion of the %whencompiling directive. Here is the list of all the
pragmas:

83

D PRAGMAS

pragma purpose default see section

pragma ndarray type check On/off flag for typechecking
of decorated ndarrays

True 8.2.6

pragma ndarray bounds checks On/off flag for bounds check-
ing of {} accesses to decorated
ndarrays

False 8.2.7

pragma gen all off On/off flag to control the
generation of all convenience
methods for modest and un-
spoiled classes

True 9.2.1

pragma gen strmeth On/off flag to control the
generation of the str ()

method

True 9.2.2

pragma gen equalmeth On/off flag to control the
generation of the equal ()

method

True 9.2.3

pragma gen richcmpmeth On/off flag for the generation
of the richcmp () method

True 9.2.4

pragma gen dictcoercion On/off flag for the genera-
tion of the todict () and
fromdict () dictionary coer-
cion methods

True 9.2.5

pragma gen pickle On/off flag for the genera-
tion of the reduce () and
setstate () pickling meth-

ods

True 9.2.6

pragma gen fastio On/off flag for the genera-
tion of the fastdump () and
fastload () fastio methods

True 9.2.7

pragma gen deepcopy On/off flag for the generation
of the deepcopy () method

True 9.2.8

pragma gen hashmeth On/off flag for the generation
of the hash () method

True 9.2.9

pragma c only Generate errors if any slow
calls to Python are generated

False 14.2

84

E BUILTINS

E Builtins

Pex brings certain C functions into your regular environment, for example you can do the
following:

1 c_fprintf(c_stderr ,"Here is the message: %s %d pm\n","the crow flies at" ,12)

out Here is the message: the crow flies at 12 pm

Here is the .pxi file that brings them all in:

1 cdef extern from "stdio.h":

2 ctypedef struct FILE:

3 char* _IO_read_ptr

4 char* _IO_read_end

5 char* _IO_read_base

6 char* _IO_write_base

7 char* _IO_write_ptr

8 char* _IO_write_end

9 char* _IO_buf_base

10 char* _IO_buf_end

11 int _fileno

12

13 FILE *c_stdout "stdout"

14 FILE *c_stderr "stderr"

15

16 int c_fflush "fflush" (FILE *stream) except exits

17 int c_fprintf "fprintf" (FILE *file , char *format , ...) except exits

18 int c_printf "printf" (char *format , ...) except exits

19 int c_sprintf "sprintf" (char *s, char *format , ...) except exits

20

21 int c_fwrite "fwrite" (void *, int , int , FILE *) except exits

22 int c_fread "fread" (void *, int , int , FILE *) except exits

23 int c_fclose "fclose" (FILE *) # no ” ex c ep t e x i t s ”
24 # screws up PyFi le FromFi le
25 FILE * c_fdopen "fdopen" (int fd, char *mode) except exits

26

27 int c_fgetc "fgetc" (FILE *) except exits

28 char * c_fgets "fgets" (char *, int , FILE *) except exits

29

30 int c_feof "feof" (FILE *) except exits

31

32 int c_sscanf "sscanf" (char*, char*, ...) except exits

33

34 cdef extern from "unistd.h":

35 int c_read "read" (int fd , void *buf , int count) except exits

36 int c_write "write" (int fd , void *buf , int count) except exits

37

85

E BUILTINS

38 cdef extern from "stdlib.h":

39 long c_strtol "strtol" (char *, char **, int) except exits

40 void* c_malloc "malloc" (int) except exits

41 void c_free "free" (void*) except exits

42 int c_atoi "atoi" (char*) except exits

43 void c_abort "abort" () except exits

44 void c_exit "exit" (int) except exits

45

46 cdef extern from "string.h":

47 char * c_strcpy "strcpy" (char *, char *) except exits

48 char * c_strncpy "strncpy" (char *, char *, int n) except exits

49

50 int c_strcmp "strcmp" (char *, char *) except exits

51 int c_strncmp "strncmp" (char *, char *, int n) except exits

52

53 int c_strlen "strlen" (char *) except exits

54

55 void * c_memcpy "memcpy" (void*, void*, int) except exits

56

57 cdef extern from "math.h":

58 double M_E

59 double M_PI

60

61 double c_abs "fabs" (double) except exits

62

63 double c_loge "log" (double) except exits

64 double c_log10 "log10" (double) except exits

65 double c_log2 "log2" (double) except exits

66

67 double c_sqrt "sqrt" (double) except exits

68

69 double c_pow "pow" (double ,double) except exits

70

71 double c_exp "exp" (double) except exits

72

73 double c_floor "floor" (double) except exits

74

75 double c_ceil "ceil" (double) except exits

76 double c_round "round" (double) except exits

77 double c_erf "erf" (double) except exits

78 double c_erfc "erfc" (double) except exits

79 double c_fmod "fmod" (double ,double) except exits

80

81 cdef extern from "bits/nan.h":

82 double NAN

83

84

85 cdef extern from "pex_builtin.h":

86 double c_max(double ,double) except exits

86

E BUILTINS

87 double c_min(double ,double) except exits

88

89 int c_sign(double) except exits

90

91 #unsigned l ong l ong c r d t s c () e x c ep t e x i t s
92

93 ctypedef void* c_function_pointer

94

95 cdef extern from "Python.h":

96 ctypedef struct PyObject:

97 int ob_refcnt

98

99 ctypedef struct PyTypeObject:

100 # more f i e l d s in here , bu t we don ’ t care about them
101 int tp_basicsize

102 void* (* tp_new)(PyTypeObject*,void*,void*)

103 int (* tp_traverse)(PyObject*, int (* visitproc)(PyObject*, void*), void*)

104

105 ctypedef struct PyObject:

106 int ob_refcnt

107 PyTypeObject *ob_type

108

109 int PyString_AsStringAndSize(object obj , char **buffer , int *length)

110 object PyString_FromStringAndSize(char *v, int len)

111 char* PyString_AsString(object string)

112

113 long PyInt_AsLong(object io)

114 int PyInt_Check(object o)

115 object PyInt_FromLong(long ival)

116 void Py_INCREF(PyObject *o) except exits

117 void Py_DECREF(PyObject *o) except exits

118 int Py_REFCNT(PyObject *o) except exits

119 int Py_SIZE(PyObject *o) except exits

120

121 object PyFile_FromFile(FILE *fp, char *name , char *mode ,

122 int (* close)(FILE *))

123

124 int PyList_Append(object list , object item)

125

126 PyObject* Py_None

127

128 object PyErr_SetFromErrno(PyObject *type)

129 PyObject* PyExc_IOError

130

131 char* PyModule_GetName(PyObject *module)

132

133 long PyObject_Hash(object ob)

134

135 ctypedef char bool

87

E BUILTINS

136

137 cdef enum:

138 cFalse ,cTrue

139

140 ctypedef unsigned char uchar

141

142 ctypedef unsigned short ushort

143

144 ctypedef unsigned int uint

145

146 ctypedef long long int64

147 ctypedef unsigned long long uint64

88

	Introduction
	What You Are Assumed to Know
	A Word of Caution
	Heroic Example

	Notation
	Getting Started
	Simple Example
	Slightly Less Simple Example

	Conventions
	Interacting with Python
	The main() function
	Pimports
	Simple
	Elaborate

	NDArray Decoration
	Simple
	Elaborate

	Modest Cdef Classes
	Simple
	Elaborate

	pex.pexruntime
	pex_create_uninitialized()
	Primitive C Types and Literals
	C struct and typedef
	Configuring Compilation
	Pragmas and the scope Object
	pragma_c_only

	Linking with External C Code
	Backtraces on SIGSEGV, SIGFPE, SIGBUS, and SIGABRT
	Command Line Usage
	Compiling for Code Coverage
	Distributing Code
	Exceptions
	Using Exceptions in Fast, Low Level Code
	Exception Traceback Formatting

	Efficiency
	Annotate Mode

	Gotchas
	Crossplatform Status
	Acknowledgements
	Conclusion
	Wrapping cdef functions
	Wrapping cdef functions: the slow and simple way
	Wrapping cdef functions via classes
	Obtaining generality via subclassing
	Do we need all of these classes?
	Wrapping Python objects as Pex objects

	What is Pyrex?
	Simple
	Elaborate

	Differences Between Pex and Pyrex
	Defining cdef Class Attributes
	Unsupported Features

	Pragmas
	Builtins

